Wave Load Mitigation by Perforation of Monopiles
Abstract
:1. Introduction
Problem Statement
2. Experimental Setup and Test Procedure
Tested Program
- T
- wave period,
- D
- monopile diameter,
- maximum particle velocity at MWL.
3. Results
3.1. Regular Waves
3.2. Irregular Waves
3.3. Drag and Inertia by the Morison Equation
- f
- distributed Morison force (force per unit length of structure height),
- density of water,
- inertia coefficient,
- D
- structural diameter,
- horizontal particle velocity at the center line of the structure (),
- drag coefficient.
4. Discussion
Recommendations for Further Work
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Wave Heights
Sea State | With Model | Without Model | ||
---|---|---|---|---|
[m] | [m] | [m] | [m] | |
1 | 18.88 | 18.86 | ||
2 | ||||
3 | 15.61 | 16.25 | ||
4 | 16.49 | 16.14 | ||
5 | 1.12 | 0.90 | ||
6 | ||||
7 | 7.10 | 7.22 | ||
8 | 9.99 | 9.88 | ||
11 | ||||
12 | ||||
13 | ||||
14 | ||||
15 | ||||
16 |
Appendix B. Force Coefficients
- measured resulting force time series,
- resulting Morison force time series calculated based on Equation (2).
Reference Monopile | Perforated Monopile | Perforated Monopile | |||||
---|---|---|---|---|---|---|---|
Scaled Coefficients | |||||||
Sea State | |||||||
1 | 8.00 | 1.68 | 1.30 | 1.24 | 1.69 | 1.10 | 1.72 |
2 | 9.02 | 1.81 ± 0.02 | 1.69 ± 0.06 | 1.43 ± 0.04 | 2.16 ± 0.11 | 1.22 ± 0.04 | 1.84 ± 0.09 |
6 | 1.16 | 1.84 ± 0.02 | 15.75 ± 1.95 | 0.98 ± 0.01 | 14.18 ± 0.50 | 1.03 ± 0.02 | 14.96 ± 0.41 |
7 | 2.94 | 1.98 | 2.03 | 1.54 | 3.97 | 1.64 | 4.22 |
8 | 5.15 | 1.82 | 1.37 | 1.52 | 1.88 | 1.74 | 2.16 |
11 | 1.70 | 1.90 ± 0.03 | 2.48 ± 0.23 | 1.49 ± 0.02 | 4.42 ± 0.14 | 1.59 ± 0.03 | 4.72 ± 0.14 |
12 | 1.59 | 1.96 ± 0.02 | 5.01 ± 0.24 | 1.44 ± 0.01 | 7.85 ± 0.23 | 1.62 ± 0.01 | 8.88 ± 0.29 |
13 | 2.12 | 1.97 ± 0.02 | 2.31 ± 0.13 | 1.59 ± 0.01 | 4.08 ± 0.17 | 1.79 ± 0.02 | 4.59 ± 0.25 |
14 | 1.93 | 1.93 ± 0.01 | 2.17 ± 0.15 | 1.52 ± 0.01 | 3.90 ± 0.16 | 1.65 ± 0.03 | 4.18 ± 0.18 |
15 | 2.35 | 1.95 ± 0.02 | 2.64 ± 0.12 | 1.56 ± 0.02 | 4.01 ± 0.06 | 1.81 ± 0.03 | 4.65 ± 0.10 |
16 | 2.18 | 2.01 ± 0.02 | 2.74 ± 0.23 | 1.61 ± 0.02 | 4.27 ± 0.26 | 1.76 ± 0.01 | 4.66 ± 0.33 |
References
- WindEurope. Wind Energy in Europe in 2018, Trends and Statistics; Walsh, C., Pineda, I., Eds.; WindEurope: Brussels, Belgium, 2019. [Google Scholar]
- LEANWIND Consortium. Driving Cost Reductions in Offshore Wind; McAuliffe, F.D., Murphy, J., Lynch, K., Desmond, C., Norbeck, J.A., Nonås, L.M., Attari, Y., Doherty, P., Sørensen, J.D., Giebhardt, J., et al., Eds.; LEANWIND: Cork, Ireland, 2017. [Google Scholar]
- WindEurope. Offshore Wind in Europe, Key Trends and Statistics 2018; Walsh, C., Ed.; WindEurope: Brussels, Belgium, 2019. [Google Scholar]
- Bahaj, A.S.; Barnhart, C.J.; Bhattacharya, S.; Carbajales-Dale, M.; Cui, L.; Dai, K.; Dower, B.; Erdem, E.; Fried, L.; Gao, K.; et al. Civil Engineering Aspects of a Wind Farm. In Wind Energy Engineering, 1st ed.; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; ISBN 978-0-12-809451-8. [Google Scholar]
- IRENA (International Renewable Energy Agency). Floating Foundations: A Game Changer for Offshore Wind Power. J. Phys. Conf. Ser. 2016, 753. [Google Scholar] [CrossRef]
- Schaumann, P.; Böker, C. Can Jackets and Tripods compete with Monopiles? In Proceedings of the Copenhagen Offshore Wind Conference, Copenhagen, Denmark, 26–28 October 2005. [Google Scholar]
- Gong, W. Lattice Tower Design of Offshore Wind Turbine Support Structures. Master’s Thesis, Norwegian University of Science and Technology (NTNU), Trondheim, Norway, June 2011. [Google Scholar]
- Seidel, M. Substructures for offshore wind turbines—Current trends and developments. Festschrift Peter Schaumann 2014. [Google Scholar] [CrossRef]
- Damiani, R.; Dykes, K.; Scott, G. A comparison study of offshore wind support structures with monopiles and jackets for U.S. waters. J. Phys. Conf. Ser. 2016, 753. [Google Scholar] [CrossRef]
- Stehly, T.; Beiter, P.; Heimiller, D.; Scott, G. 2017 Cost of Wind Energy Review; National Renewable Energy Laboratory: Golden, CO, USA, 2018. [CrossRef]
- Maher, M.M.; Swain, G. The Corrosion and Biofouling Characteristics of Sealed vs. Perforated Offshore Monopile Interiors, Experiment Design Comparing Corrosion and Environment Inside Steel Pipe. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018. [Google Scholar]
- Frigaard, P.; Andersen, T.L. Analysis of Waves: Technical Documentation for WaveLab 3; Department of Civil Engineering, Aalborg University: Aalborg, Denmark, 2014; ISSN 1901-7286. [Google Scholar]
- Rienecker, M.M.; Fenton, J.D. A Fourier approximation for steady water waves. J. Fluid Mech. 1981, 104. [Google Scholar] [CrossRef]
- Zhang, H.; Schäffer, H.A. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes. Ocean Eng. 2007, 34. [Google Scholar] [CrossRef]
- Schäffer, H.A. Second-order wavemaker theory for irregular waves. Ocean Eng. 1996, 23. [Google Scholar] [CrossRef]
- Eldrup, M.R.; Andersen, T.L. Applicability of Nonlinear Wavemaker Theory. J. Mar. Sci. Eng. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.L.; Clavero, M.; Frigaard, P.; Losada, M.; Puyol, J.I. A new active absorption system and its performance to linear and non-linear waves. Coast. Eng. 2016, 114. [Google Scholar] [CrossRef]
- Chakrabarti, S.K. Hydrodynamics on Offshore Structures, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1987; ISBN 0-387-17319-6. [Google Scholar]
- Morison, J.R.; O’Brien, M.; Johnson, J.; Schaaf, S. The Forces Exerted by Surface Waves on Piles. In Petroleum Transactions; AIME: New York, NY, USA, 1950; Volume 189. [Google Scholar]
- Journée, J.M.J.; Massie, W.W. Offshore Hydromechanics, 1st ed.; Delft University of Technology: Delft, The Netherlands, 2001. [Google Scholar]
- DNV GL AS. DNVGL-ST-0437: Loads and Site Conditions for Wind Turbines; DNV GL: Oslo, Norway, 2016. [Google Scholar]
- Burcharth, H.F. Strøm- og Bølgekræfter på Stive Legemer (Danish), 2nd ed.; Aalborg Universitet: Aalborg, Denmark, 2002. [Google Scholar]
- Sarpkaya, T. Wave Forces on Offshore Structures; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
Water Depth [m] | Undamped Eigenfrequency [Hz] | Damping Ratio [-] | ||
---|---|---|---|---|
Perforated | Reference | Perforated | Reference | |
33 | 0.405 | 0.493 | 0.0224 | 0.0185 |
35 | 0.402 | 0.491 | 0.0202 | 0.0186 |
38 | 0.399 | 0.480 | 0.0207 | 0.0170 |
Sea State | Type | Wavemaker Theory | h [m] | H or [m] | T or [s] | [-] |
---|---|---|---|---|---|---|
1 | Regular | Approx. SF. | 38 | 19.2 ± 0.05 | 14.4 | 8.00 |
2 | Regular | Approx. SF. | 38 | 18.5 ± 0.20 | 16.4 | 9.02 |
3 | Regular | Approx. SF. | 33 | 16.3 | 14.4 | 7.39 |
4 | Regular | Approx. SF. | 33 | 16.1 | 16.4 | 8.54 |
5 | Regular | 2nd order | 35 | 0.90 | 4.7 | 0.28 |
6 | Regular | 2nd order | 35 | 3.8 ± 0.04 | 7.3 | 1.16 |
7 | Regular | Approx. SF. | 35 | 7.8 ± 0.03 | 11.8 | 2.94 |
8 | Regular | Approx. SF. | 35 | 10.8 ± 0.01 | 15.1 | 5.15 |
9 | Irregular | 2nd order | 35 | 1.6 | 5.1 | 0.49 |
10 | Irregular | 2nd order | 35 | 8.2 | 12.9 | 3.33 |
11 | Regular | Approx. SF. | 35 | 3.7 ± 0.02 | 14.9 | 1.70 |
12 | Regular | Approx. SF. | 35 | 4.6 ± 0.02 | 10.3 | 1.59 |
13 | Regular | Approx. SF. | 35 | 3.4 ± 0.02 | 20.4 | 2.12 |
14 | Regular | Approx. SF. | 35 | 4.1 ± 0.01 | 15.3 | 1.93 |
15 | Regular | Approx. SF. | 35 | 3.8 ± 0.01 | 20.1 | 2.35 |
16 | Regular | Approx. SF. | 35 | 4.5 ± 0.01 | 15.7 | 2.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andersen, J.; Abrahamsen, R.; Andersen, T.L.; Andersen, M.T.; Baun, T.L.; Neubauer, J.L. Wave Load Mitigation by Perforation of Monopiles. J. Mar. Sci. Eng. 2020, 8, 352. https://doi.org/10.3390/jmse8050352
Andersen J, Abrahamsen R, Andersen TL, Andersen MT, Baun TL, Neubauer JL. Wave Load Mitigation by Perforation of Monopiles. Journal of Marine Science and Engineering. 2020; 8(5):352. https://doi.org/10.3390/jmse8050352
Chicago/Turabian StyleAndersen, Jacob, Rune Abrahamsen, Thomas Lykke Andersen, Morten Thøtt Andersen, Torben Ladegaard Baun, and Jesper Lykkegaard Neubauer. 2020. "Wave Load Mitigation by Perforation of Monopiles" Journal of Marine Science and Engineering 8, no. 5: 352. https://doi.org/10.3390/jmse8050352
APA StyleAndersen, J., Abrahamsen, R., Andersen, T. L., Andersen, M. T., Baun, T. L., & Neubauer, J. L. (2020). Wave Load Mitigation by Perforation of Monopiles. Journal of Marine Science and Engineering, 8(5), 352. https://doi.org/10.3390/jmse8050352