Comparison of Five TRIzol-Based Protein Preparation Methods for 2-DE Production From Challenging Marine Dinoflagellate Samples: A Case Study on Two Benthic Prorocentrum Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Algal Cultures and Cultivation Condition
2.2. Cell Harvesting
2.3. Protein Extraction
2.3.1. TRIzol Method
2.3.2. Aliquot TRIzol Method
2.3.3. Re-TRIzol Method
2.3.4. TRIzol Method with a Commercial Clean-Up Kit
2.3.5. TRIzol Method with TCA/Acetone Precipitation
2.4. Protein Quantification, Two-Dimensional Gel Electrophoresis and Imaging Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of the Five TRIzol-Based Methods
3.2. Yield of Extracted Proteins
3.3. Quality of 2-DE Images
3.4. Evaluation of the Four Modified TRIzol-based Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Landsberg, J.H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 2002, 10, 113–390. [Google Scholar] [CrossRef]
- O’Farrell, P.H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 1975, 250, 4007–4021. [Google Scholar] [PubMed]
- Marshall, T.; Williams, K.M. High resolution two-dimensional electrophoresis of the proteins and macromolecular constituents of beer and wine. Electrophoresis 1987, 8, 493–495. [Google Scholar] [CrossRef]
- Lee, F.W.F.; Morse, D.; Lo, S.C.L. Identification of two plastid proteins in the dinoflagellate Alexandrium affine that are substantially down-regulated by nitrogen-depletion. J. Proteome Res. 2009, 8, 5080–5092. [Google Scholar] [CrossRef]
- Chan, L.L.; Hodgkiss, I.J.; Wan, J.M.F.; Lum, J.H.K.; Mak, A.S.C.; Sit, W.H.; Lo, S.C.L. Proteomic study of a model causative agent of harmful algal blooms, Prorocentrum triestinum II: The use of differentially expressed protein profiles under different growth phases and growth conditions for bloom prediction. Proteomics 2004, 4, 3214–3226. [Google Scholar] [CrossRef]
- Lee, F.W.F.; Lo, S.C.L. The use of Trizol reagent (phenol/guanidine isothiocyanate) for producing high quality two-dimensional gel electrophoretograms (2-DE) of dinoflagellates. J. Microbiol. Methods 2008, 73, 26–32. [Google Scholar] [CrossRef]
- Lyon, B.R.; Lee, P.A.; Bennett, J.M.; Ditullio, G.R.; Janech, M.G. Proteomic analysis of a sea-ice diatom: Salinity acclimation provides new insight into the dimethylsulfoniopropionate production pathway. Plant Physiol. 2011, 157, 1926–1941. [Google Scholar] [CrossRef]
- Tan, A.A.; Azman, S.N.; Abdul Rani, N.R.; Kua, B.C.; Sasidharan, S.; Kiew, L.V.; Othman, N.; Noordin, R.; Chen, Y. Optimal protein extraction methods from diverse sample types for protein profiling by using two-dimensional electrophoresis (2DE). Trop Biomed 2011, 28, 620–629. [Google Scholar]
- Wang, D.Z.; Zhang, Y.J.; Zhang, S.-F.; Lin, L.; Hong, H.S. Quantitative proteomic analysis of cell cycle of the dinoflagellate Prorocentrum donghaiense (Dinophyceae). PLoS ONE 2013, 8, e63659. [Google Scholar] [CrossRef]
- Wang, D.Z.; Li, C.; Xie, Z.X.; Dong, H.P.; Lin, L.; Hong, H.S. Homology-driven proteomics of dinoflagellates with unsequenced genomes using MALDI-TOF/TOF and automated de novo sequencing. Evid. Based Complement. Alternat. Med. Alt. 2011, 2011, 1–16. [Google Scholar]
- Li, C.; Wang, D.; Dong, H.; Xie, Z.; Hong, H. Proteomics of a toxic dinoflagellate Alexandrium catenella dh01: Detection and identification of cell surface proteins using fluorescent labeling. Chin. Sci. Bull. 2012, 57, 3320–3327. [Google Scholar] [CrossRef]
- Wang, D.Z.; Li, C.; Zhang, Y.; Wang, Y.Y.; He, Z.-P.; Lin, L.; Hong, H.-S. Quantitative proteomic analysis of differentially expressed proteins in the toxicity-lost mutant of Alexandrium catenella (Dinophyceae) in the exponential phase. J. Proteom. 2012, 75, 5564–5577. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Xie, Z.X.; He, Z.P.; Lin, L.; Wang, D.Z. Quantitative proteomic analysis reveals evolutionary divergence and species-specific peptides in the Alexandrium tamarense complex (Dinophyceae). J. Proteom. 2013, 86, 85–96. [Google Scholar] [CrossRef]
- Liu, B.; Lo, S.C.L.; Matton, D.P.; Lang, B.F.; Morse, D. Daily changes in the phosphoproteome of the dinoflagellate Lingulodinium. Protist 2012, 163, 746–754. [Google Scholar] [CrossRef]
- Lee, T.C.H.; Kwok, C.S.N.; Ho, K.C.; Xu, J.L.; Wong, Y.K.; Lee, F.W.F. Effectiveness of previous established TRIzol—methodology for the production of 2-DE of DSP toxin producing Prorocentrum species. In Proceedings of the 1st International Conference on Beneficial Uses of Algal Biomass (ICBUAB 2013), Hong Kong, China, 5–8 November 2013; pp. 79–92. [Google Scholar]
- Jiang, X.W.; Wang, J.; Chan, L.L.; Lam, P.K.S.; Gu, J.-D. Comparison of three protein extraction procedures from toxic and non-toxic dinoflagellates for proteomics analysis. Ecotoxicology 2015, 24, 1395–1406. [Google Scholar] [CrossRef]
- Karthikaichamy, A.; Deore, P.; Rai, V.; Bulach, D.; Beardall, J.; Noronha, S.; Srivastava, S. Time for multiple extraction methods in proteomics? a comparison of three protein extraction methods in the eustigmatophyte alga Microchloropsis gaditana CCMP526. OMICS 2017, 21, 678–683. [Google Scholar] [CrossRef]
- Wang, D.Z.; Lin, L.; Chan, L.L.; Hong, H.-S. Comparative studies of four protein preparation methods for proteomic study of the dinoflagellate Alexandrium sp. using two-dimensional electrophoresis. Harmful Algae 2009, 8, 685–691. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Hargraves, P.E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 1993, 32, 234–236. [Google Scholar] [CrossRef]
- Ramagli, L.S.; Rodriguez, L.V. Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis 1985, 6, 559–563. [Google Scholar] [CrossRef]
- Wang, W.; Scali, M.; Vignani, R.; Spadafora, A.; Sensi, E.; Mazzuca, S.; Cresti, M. Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 2003, 24, 2369–2375. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tai, F.; Chen, S. Optimizing protein extraction from plant tissues for enhanced proteomics analysis. J. Sep. Sci. 2008, 31, 2032–2039. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xiong, E.; Wang, W.; Scali, M.; Cresti, M. Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nat. Protoc. 2014, 9, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vignani, R.; Scali, M.; Cresti, M. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 2006, 27, 2782–2786. [Google Scholar] [CrossRef]
- Reim, D.F.; Speicher, D.W. N-terminal sequence analysis of proteins and peptides. In Current Protocols in Protein Science; Coligan, J.E., Dunn, B.M., Ploegh, H.L., Speicher, D.W., Wingfield, P.T., Eds.; John Wiley & Sons, Inc.: Bundoora, Australia, 2001; Volume 24, pp. 1–31. [Google Scholar]
- Likhite, N.; Warawdekar, U.M. A unique method for isolation and solubilization of proteins after extraction of RNA from tumor tissue using Trizol. J. Biomol. Tech. 2011, 22, 37–44. [Google Scholar]
- Görg, A.; Obermaier, C.; Boguth, G.; Harder, A.; Scheibe, B.; Wildgruber, R.; Weiss, W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000, 21, 1037–1053. [Google Scholar] [CrossRef]
- Damerval, C.; Vienne, D.D.; Zivy, M.; Thiellement, H. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 1986, 7, 52–54. [Google Scholar] [CrossRef]
- Isaacson, T.; Damasceno, C.M.B.; Saravanan, R.S.; He, Y.; Catalá, C.; Saladié, M.; Rose, J.K.C. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat. Protoc. 2006, 1, 769–774. [Google Scholar] [CrossRef]
- Wu, X.; Gong, F.; Wang, W. Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics 2014, 14, 645–658. [Google Scholar] [CrossRef]
- Wang, S.B.; Hu, Q.; Sommerfeld, M.; Chen, F. An optimized protocol for isolation of soluble proteins from microalgae for two-dimensional gel electrophoresis analysis. J. Appl. Phycol. 2003, 15, 485–496. [Google Scholar] [CrossRef]
- Rajalingam, D.; Loftis, C.; Xu, J.J.; Kumar, T.K.S. Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci. 2009, 18, 980–993. [Google Scholar] [CrossRef] [PubMed]
- Fic, E.; Kedracka-Krok, S.; Jankowska, U.; Pirog, A.; Dziedzicka-Wasylewska, M. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 2010, 31, 3573–3579. [Google Scholar] [CrossRef] [PubMed]
Type of Microalgae | Species | Year of Publication | Reference |
---|---|---|---|
Dinoflagellate | Alexandrium sp. | 2008 | [7] |
Scrippsiella sp. | 2008 | [7] | |
Alexandrium affine | 2009 | [6] | |
Alexandrium catenella | 2011 | [11] | |
2012 | [12,13] | ||
2013 | [14] | ||
Linulodinium polyedrum | 2012 | [15] | |
Alexandrium tamarense | 2013 | [16] | |
2015 | [17] | ||
Prorocentrum donghaiense | 2013 | [10] | |
Prorocentrum belizeanum | 2013 | [16] | |
Prorocentrum lima | 2013 | [16] | |
Prorocentrum rhathymum | 2013 | [16] | |
Alexandrium minutum | 2015 | [17] | |
Gymnodinium catenatum | 2015 | [17] | |
Gynodinium sp. | 2015 | [17] | |
Cochlodinium geminatum1 | N/A | N/A | |
Karenia mikimotoi1 | N/A | N/A | |
Diatom | Fragilariopsis cylindrus | 2011 | [8] |
Eustigmatophyte | Microchloropsis gaditana | 2017 | [18] |
Raphidophyte | Chattonella marina1 | N/A | N/A |
Methods | Solvents and Kits Required | Total Time Required | Ease of Handling |
---|---|---|---|
TRIzol method | TRIzol reagent | ~3 h | Manuals are easy to follow |
Chloroform | |||
Ethanol | |||
Isopropanol | |||
Aliquot TRIzol method | TRIzol reagent | ~4 h | Handling multiple samples simultaneously |
Chloroform | |||
Ethanol | |||
Isopropanol | |||
Re-TRIzol method | TRIzol reagent | ~6 h | Manuals are easy to follow |
Chloroform | |||
Ethanol | |||
Isopropanol | |||
TRIzol method with a 2D clean-up kit | TRIzol reagent | ~6 h | Many steps in the clean-up procedure |
Chloroform | |||
Ethanol | |||
Isopropanol | |||
2D clean up kit | |||
Mili-Q water | |||
TRIzol method with TCA/acetone precipitation | TRIzol reagent | ~20 h 1 | Need for preparation of additional solvents prior to extraction |
Chloroform | |||
Ethanol | |||
Isopropanol | |||
10% TCA/acetone | |||
Cold acetone | |||
DTT |
Methods | No. of Spots | Quality of Background | Resolution of Protein Spots | |||
---|---|---|---|---|---|---|
PL | PH | PL | PH | PL | PH | |
TRIzol method | 650 ± 33.95 | 511 ± 98.43 | ++ | - | ++ | + |
Aliquot TRIzol method | 539 ± 83.43 | N/A | ++ | - | + | - |
Re-TRIzol method | 434 ± 119.81 * | N/A | ++ | - | - | - |
TRIzol method with a 2D clean up kit | 650 ± 46 | 551 ± 46.61 | ++ | ++ | ++ | ++ |
TRIzol method with TCA/acetone precipitation | 329 ± 16.74 * | N/A | ++ | + | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.C.-H.; Lai, K.K.-Y.; Kwok, C.S.-N.; Xu, S.J.-L.; Lee, F.W.-F. Comparison of Five TRIzol-Based Protein Preparation Methods for 2-DE Production From Challenging Marine Dinoflagellate Samples: A Case Study on Two Benthic Prorocentrum Species. J. Mar. Sci. Eng. 2020, 8, 363. https://doi.org/10.3390/jmse8050363
Lee TC-H, Lai KK-Y, Kwok CS-N, Xu SJ-L, Lee FW-F. Comparison of Five TRIzol-Based Protein Preparation Methods for 2-DE Production From Challenging Marine Dinoflagellate Samples: A Case Study on Two Benthic Prorocentrum Species. Journal of Marine Science and Engineering. 2020; 8(5):363. https://doi.org/10.3390/jmse8050363
Chicago/Turabian StyleLee, Thomas Chun-Hung, Kaze King-Yip Lai, Celia Sze-Nga Kwok, Steven Jing-Liang Xu, and Fred Wang-Fat Lee. 2020. "Comparison of Five TRIzol-Based Protein Preparation Methods for 2-DE Production From Challenging Marine Dinoflagellate Samples: A Case Study on Two Benthic Prorocentrum Species" Journal of Marine Science and Engineering 8, no. 5: 363. https://doi.org/10.3390/jmse8050363
APA StyleLee, T. C.-H., Lai, K. K.-Y., Kwok, C. S.-N., Xu, S. J.-L., & Lee, F. W.-F. (2020). Comparison of Five TRIzol-Based Protein Preparation Methods for 2-DE Production From Challenging Marine Dinoflagellate Samples: A Case Study on Two Benthic Prorocentrum Species. Journal of Marine Science and Engineering, 8(5), 363. https://doi.org/10.3390/jmse8050363