Comparison of Modern and Pleistocene (MIS 5e) Coastal Boulder Deposits from Santa Maria Island (Azores Archipelago, NE Atlantic Ocean)
Abstract
:1. Introduction
2. Geographical and Geological Setting
2.1. Position and Geotectonic Setting
2.2. Sources and Shaping of the Boulders
2.3. Wave Energy and Direction
3. Methods
3.1. Data Collection
3.2. Hydraulic Model
4. Results
4.1. Prainha on the South Shore
4.2. Context of the Pleistocene Fauna at Prainha
4.3. Ponta Do Castelo at the Island’s Southeast End
4.4. Context of the Pleistocene Fauna at Ponta Do Castelo
4.5. Ponta Do Cedro on the Island’s East Shore
4.6. Context of the Pleistocene Fauna at Ponta Do Cedro
4.7. Analysis of Calculated Storm-Wave Heights
5. Discussion
5.1. CBD: Tsunami Versus Storms, and the Use of Flawed Equations
5.2. Comparison between Model Wave-Height Data and Inferred Modern Wave-Height
5.3. Comparison with CBD Studies Elsewhere
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansen, J.; Sato, M.; Hearty, P.; Ruedy, R.; Kelley, M.; Masson-Delmotte, V.; Russell, G.; Tselioudis, G.; Cao, J.; Rignot, E.; et al. Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos. Chem. Phys. 2016, 16, 3761–3812. [Google Scholar] [CrossRef] [Green Version]
- Hearty, P.J.; Neumann, A.C. Rapid sea level and climate change at the close of the Last Interglaciation (MIS 5e): Evidence from the Bahama Islands. Quat. Sci. Rev. 2001, 20, 1881–1895. [Google Scholar] [CrossRef]
- Hearty, P.J.; Tormey, B.R. Sea-level change and super storms; geologic evidence from the last interglacial (MIS 5e) in the Bahamas and Bermuda offers ominous prospects for a warming Earth. Mar. Geol. 2017, 390, 347–365. [Google Scholar] [CrossRef]
- Ávila, S.P.; Melo, C.; Silva, L.; Ramalho, R.S.; Quatau, R.; Hipólito, A.; Cordeiro, R.; Rebelo, A.C.; Madeira, P.; Rovere, A.; et al. A review of the MIS 5e highstand deposits from Santa Maria Island (Azores, NE Atlantic): Palaeobiodiversity, palaeoecology and palaeobiogeography. Quat. Sci. Rev. 2015, 114, 126–148. [Google Scholar] [CrossRef]
- Naylor, L.A.; Stephenson, W.J. On the role of discontinuities in mediating shore platform erosion. Geomorphology 2011, 114, 89–100. [Google Scholar] [CrossRef]
- Borges, P. Ambientes Litorais nos Grupos Central e Oriental do Arquipélago dos Açores, Conteúdos e Dinâmica de Microescala. Ph.D. Thesis, Universidade dos Açores, Ponta Delgada, Portugal, 2003; pp. 1–412. [Google Scholar]
- Quartau, R.; Trenhaile, A.S.; Mitchell, N.C.; Tempera, F. Development of volcanic insular shelves: Insights from observations and modelling of Faial Island in the Azores Archipelago. Mar. Geol. 2010, 275, 66–83. [Google Scholar] [CrossRef]
- Ramalho, R.S.; Helffrich, G.; Madeira, J.; Cosca, M.; Thoas, C.; Quartau, R.; Hipólito, A.; Rovere, A.; Hearty, P.J.; Ávila, S.P. Emergence and evolution of Santa Maria Island (Azores)—The conundrum of uplifted islands revisited. Geol. Soc. Am. Bull. 2017, 129, 372–391. [Google Scholar] [CrossRef] [Green Version]
- Casalbore, D.; Romagnoli, C.; Bosman, A.; Anzidei, M.; Chiocci, F.L. Coastal hazard due to submarine canyons in active insular volcanoes: Examples from Lipari Island (southern Tyrrhenian Sea). J. Coast. Conserv. 2018, 22, 989–999. [Google Scholar] [CrossRef]
- Bosman, A.; Casalbore, D.; Romagnoli, C.; Chiocci, F.L. Formation of an ‘a’ā lava delta: Insights from time-lapse multibeam bathymetry and direct observations during the Stromboli 2007 eruption. Bull. Volc. 2014, 76, 838. [Google Scholar] [CrossRef]
- Rusu, L.; Soares, C.G. Wave energy assessments in the Azores islands. Renew. Energy 2012, 45, 183–196. [Google Scholar] [CrossRef]
- Ávila, S.P.; Melo, C.; Berning, B.; Sá, N.; Quartau, R.; Rijsdijk, K.F.; Ramalho, R.S.; Cordeiro, R.; De Sá, N.C.; Pimentel, A.; et al. Towards a ‘Sea-Level Sensitive’ dynamic model: Impact of island ontogeny and glacio-eustasy on global patterns of marine island biogeography. Biol. Rev. 2019, 94, 1116–1142. [Google Scholar]
- Melo, C.S.; Ramalho, R.S.; Quartau, R.; Hipólito, A.; Gil, A.; Borges, P.A.; Cardigos, F.; Ávila, S.P.; Madeira, J.; Gaspar, J.L. Genesis and morphological evolution of coastal talus-platforms (fajãs) with lagoons: The case study of the newly-formed Fajã dos Milagres (Corvo Island, Azores). Geomorphology 2018, 310, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Madeira, P.; Kroh, A.; Cordeiro, R.; Meireles, R.; Ávila, S.P. The fossil echinoids of Santa Maria island, Azores (Northern Atlantic Ocean). Acta Geol Pol 2011, 61, 243–264. [Google Scholar]
- Ávila, S.P.; Cachão, M.; Ramalho, R.S.; Botelho, A.Z.; Madeira, P.; Rebelo, A.C.; Cordeiro, R.; Melo, C.; Hipólito, A.; Ventura, M.A.; et al. The Palaeontological heritage of Santa Maria Island (Azores: NE Atlantic): A re-evaluation of geosites in GeoPark Azores and their use in geotourism. Geoheritage 2016, 8, 155–171. [Google Scholar] [CrossRef]
- Raposo, V.; Melo, C.; Ventura, M.A.; Câmara, R.; Tavares, J.; Johnson, M.E.; Ávila, S.P. Comparing methods of evaluation of geosites: The fossiliferous outcrops of Santa Maria Island (Azores: NE Atlantic) as a case-study for sustainable Island tourism. Sustainability 2018, 10, 3596. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Ledesma-Vázquez, J.; Guardado-France, R. Coastal Geomorphology of a Holocene Hurricane Deposit on a Pleistocene Marine Terrace from Isla Carmen (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2018, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Guardado-France, R.; Johnson, E.M.; Ledesma-Vázquez, J. Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.M.; Johnson, E.M.; Guardado-France, R.; Ledesma-Vázquez, J. Holocene Hurricane Deposits Eroded as Coastal Barriers from Andesite Sea Cliffs at Puerto Escondido (Baja California Sur, Mexico). J. Mar. Sci. Eng. 2020, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Vogt, P.R.; Jung, W.-P. The “Azores Geosyndrome” and plate tectonics: Research history, synthesis, and unsolved puzzles. In Volcanoes of the Azores; Kueppers, U., Beier, C., Eds.; Active Volcanoes of the World Series; Springer: Berlin/Heidelberg, Germany, 2018; pp. 27–56. [Google Scholar]
- Meireles, R.P.; Quartau, R.; Ramalho, R.; Madeira, J.; Rebelo, A.C.; Zanon, V.; Ávila, S.P. Depositional processes on oceanic island shelves—Evidence from storm-generated Neogene deposits from the mid-North Atlantic. Sedimentology 2013, 60, 1769–1785. [Google Scholar] [CrossRef]
- Ávila, S.P.; Ramalho, R.; Habermann, J.; Quartau, R.; Kroh, A.; Berning, B.; Johnson, M.; Kirby, M.; Zanon, V.; Titschack, J.; et al. Palaeoecology, taphonomy, and preservation of a lower Pliocene shell bed (coquina) from a volcanic oceanic island (Santa Maria Island, Azores, NE Atlantic Ocean). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 430, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Ávila, S.P.; Ramalho, R.; Habermann, J.; Titschack, J. The marine fossil record at Santa Maria Island (Azores). In Volcanoes of the Azores; Kueppers, U., Beier, C., Eds.; Active Volcanoes of the World Series; Springer: Berlin/Heidelberg, Germany, 2018; pp. 155–196. [Google Scholar]
- Ricchi, A.; Quartau, R.; Ramalho, R.S.; Romagnoli, C.; Casalbore, D.; Zhao, Z. Imprints of volcanic, erosional, depositional, tectonic and mass-wasting processes in the morphology of Santa Maria insular shelf. Mar. Geol. 2020, 424, 106163. [Google Scholar] [CrossRef]
- Ricchi, A.; Quartau, R.; Ramalho, R.S.; Romagnoli, C.; Casalbore, D.; da Cruz, J.V.; Fradique, C.R.; Vinhas, A. Marine terrace development on reefless volcanic islands: New insights from high-resolution marine geophysical data offshore Santa Maria Island (Azores Archipelago). Mar. Geol. 2018, 406, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, N.; Miranda, J.M.; Luis, J.F.; Ribeiro, A.; Mendes Victor, L.A.; Madeira, J.; Needham, H.D. Morpho-tectonic analysis of the Azores volcanic plateau from a new bathymetric compilation of the area. Mar. Geophys. Res. 1998, 20, 141–156. [Google Scholar] [CrossRef]
- Madeira, J.; Ribeiro, A. Geodynamic models for the Azores triple junction: A contribution from tectonics. Tectonophysics 1990, 184, 405–415. [Google Scholar] [CrossRef]
- Madeira, J. Estudos de Neotectónica nas Ilhas do Faial, Pico e S. Jorge: Uma Contribuição para o Conhecimento Geodinâmico da Junção Tripla dos Açores. Ph.D. Thesis, Lisbon University, Lisbon, Portugal, 1998; pp. 1–481. [Google Scholar]
- Brito de Azevedo, E. Condicionantes dinâmicas do clima do Arquipélago dos Açores: Elementos para o seu estudo. Açoreana 2001, 9, 309–317. [Google Scholar]
- Andrade, C.; Trigo, R.M.; Freitas, M.C.; Callego, M.C.; Borges, P.; Ramos, A.M. Comparing historic records of storm frequency and the North Atlantic Ocillation (NAO) chronology for the Azores region. Holocene 2008, 18, 745–754. [Google Scholar] [CrossRef] [Green Version]
- Rusu, E.; Onea, F. Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renew. Energy 2016, 85, 687–703. [Google Scholar] [CrossRef]
- Gould, W.J. Physical oceanography of the Azores front. Prog. Oceanogr. 1985, 14, 167. [Google Scholar] [CrossRef]
- Klein, B.; Siedler, G. On the origin of the Azores Current. J. Geophys. Res. 1989, 94, 6159–6168. [Google Scholar] [CrossRef] [Green Version]
- Quartau, R. The Insular Shelf of Faial: Morphological and Sedimentary Evolution. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2007; pp. 1–326. [Google Scholar]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 27, 377–392. [Google Scholar] [CrossRef]
- Sneed, E.D.; Folk, R.L. Pebbles in the lower Colorado River of Texas: A study in particle morphogenesis. J. Mar. Geol. 1958, 66, 114–150. [Google Scholar] [CrossRef]
- Nott, J. Waves, coastal bolder deposits and the importance of pre-transport setting. Earth Planet. Sci. Lett. 2003, 210, 269–276. [Google Scholar] [CrossRef]
- Pepe, F.; Corradino, M.; Parrino, N.; Besio, G.; Presti, V.L.; Renda, P.; Calcagnile, L.; Quarta, G.; Sulli, A.; Antonioli, F. Boulder coastal deposits at Favignana Island rocky coast (Sicily, Italy): Litho-structural and hydrodynamic control. Geomorphology 2018, 303, 191–209. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Paris, R.; Tanaka, N. Reassessment of hydrodynamic equations: Minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 2011, 281, 70–84. [Google Scholar] [CrossRef]
- Ávila, S.P.; Rebelo, A.; Medeiros, A.; Melo, C.; Gomes, C.; Bagaço, L.; Madeira, P.; Borges, P.A.; Monteiro, P.; Cordeiro, R.; et al. Os Fósseis de Santa Maria (Açores). 1. A Jazida da Prainha; OVGA e Observatório Vulcanológico e Geotérmico dos Açores: Lagoa, Portugal, 2010; pp. 1–103. [Google Scholar]
- Zbyszewsky, G.; Ferreira, O.; da, V. La faune marine des basses plages quaternaires de Praia et Prainha dans l’ile de Santa Maria (Açores). Comunicações dos Serviços Geológicos de Portugal 1961, 45, 467–478. [Google Scholar]
- Zbyszewsky, G.; Ferreira, O.; da, V. Étude géologique de l’île de Santa Maria (Açores). Comunicações dos Serviços Geológicos de Portugal 1962, 46, 209–245. [Google Scholar]
- García-Talavera, F. Fauna tropical en el Neotirreniense de Santa Maria (I. Azores). Lavori S.I.M. 1990, 23, 439–443. [Google Scholar]
- Ávila, S.P.; Amen, R.; Azevedo, J.M.N.; Cachão, M.; García-Talavera, F. Checklist of the Pleistocene marine molluscs of Prainha and Lagoinhas (Santa Maria Island, Azores). Açoreana 2002, 9, 343–370. [Google Scholar]
- Ávila, S.P.; Madeira, P.; Mendes, N.; Rebelo, A.; Medeiros, A.; Gomes, C.; García-Talavera, F.; Marques da Silva, C.; Cachão, M.; Martins, A.M.F. Luria lurida (Mollusca: Gastropoda), a new record for the Pleistocene of Santa Maria (Azores, Portugal). Arquipélago 2007, 24, 53–56. [Google Scholar]
- Ávila, S.P.; Madeira, P.; Zazo, C.; Zazo Kroh, A.; Kirby, M.; Silva, C.M.; da Cachão, M.; Martins, A.M.F. Palaeocology of the Pleistocene (MIS 5.5) outcrops of Santa Maria Island (Azores) in a complex oceanic tectonic setting. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 274, 18–31. [Google Scholar] [CrossRef]
- Ávila, S.P.; Silva CM da Schiebel, R.; Cecca, F.; Backeljau, T.; Martins, A.M.F. How did they get here? Palaeobiogeography of the Pleistocene marine molluscs of the Azores. Bull. Geol. Soc. Fr. 2009, 180, 295–307. [Google Scholar] [CrossRef]
- Amen, R.G.; Neto, A.I.; Azevedo, J.M.N. Coralline-algal framework in the Quaternary of Prainha (Santa Maria Island, Azores). Rev. Española Micropaleontol. 2005, 37, 63–70. [Google Scholar]
- Ávila, S.P.; Azevedo, J.M.N.; Madeira, P.; Cordeiro, R.; Melo, C.S.; Baptista, L.; Torres, P.; Johnson, M.E.; Vullo, R. Pliocene and Late Pleistocene actinopterygian fishes from Santa Maria Island, Azores (NE Atlantic Ocean): Palaeoecological and palaeobiogeographical implications. Geol. Mag. 2020. [Google Scholar] [CrossRef]
- Ávila, S.P.; Cordeiro, R.; Rodrigues, R.; Rebelo, A.C.; Melo, C.; Madeira, P.; Pyenson, N.D. Fossil Mysticeti from the Pleistocene of Santa Maria Island, Azores (NE Atlantic Ocean), and the prevalence of fossil cetaceans on oceanic islands. Palaeontol. Electron. 2015, 18.2.27A, 1–12. [Google Scholar]
- Barbano, M.S.; Pirrotta, C.; Gerardi, F. Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposits? Mar. Geol. 2010, 275, 140–154. [Google Scholar] [CrossRef]
- Benner, R.; Browne, T.; Brückner, H.; Kelletat, D.; Scheffers, A. Boulder transport by waves: Progress in physical modelling. Z. Geomorphol. 2010, 4 (Suppl. 3), 127–146. [Google Scholar] [CrossRef]
- Deguara, J.C.; Gauci, R. Evidence of extreme wave events from boulder deposits on the south-east coast of Malta (Central Mediterranean). Nat. Hazards 2017, 86, 543–568. [Google Scholar] [CrossRef]
- Engel, M.; May, S.M. Bonaire’s boulder fields revisited: Evidence for Holocene tsunami impact on the Leeward Antilles. Quat. Sci. Rev. 2012, 54, 126–141. [Google Scholar] [CrossRef]
- Cox, R.; Ardhuin, F.; Dias, F.; Autret, R.; Beisiegel, N.; Earlie, C.S.; Herterich, J.G.; Kennedy, A.; Paris, R.; Raby, A.; et al. Systematic review shows that work done by storm waves can be misinterpreted as tsunami-related because commonly used hydrodynamic equations are flawed. Front. Mar. Sci. 2020, 7, 4. [Google Scholar] [CrossRef]
- Paris, R.; Ramalho, R.S.; Madeira, J.; Ávila, S.P.; May, S.M.; Rixhon, G.; Engel, M.; Brückner, H.; Herzog, M.; Schukraft, G.; et al. Mega-tsunami conglomerates and flank collapses of ocean island volcanoes. Mar. Geol. 2018, 395, 168–187. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.E.; Uchman, A.; Costa, P.J.M.; Ramalho, R.S.; Ávila, S.P. Intense hurricane transports sand onshore: Example from the Plioclene Malbusca section on Stanta Maria Island (Azores, Portugal). Mar. Geol. 2017, 385, 244–249. [Google Scholar] [CrossRef] [Green Version]
- CAPE. Last Interglacial, Project Members. Last Interglacial Arctic warmth confirms polar amplification of climate change. Quat. Sci. Rev. 2006, 25, 1383–1400. [Google Scholar] [CrossRef]
- Knudsen, K.L.; Seidenkrantz, M.-S.; Kristensen, P. Last interglacial and early glacial circulation in the Northern North Atlantic Ocean. Quat. Res. 2002, 58, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, F.; Spangehl, T.; Cubasch, U. Northern hemisphere winter storm tracks of the Eemian interglacial and the last glacial inception. Clim. Past 2007, 3, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Hearty, P.J. Boulder deposits from large waves during the last interglaciation on North Eleuthera Island, Bahamas. Quat. Res. 1997, 48, 326–338. [Google Scholar] [CrossRef]
- Engel, M.; Kindler, P.; Godefroid, F. Speculations on superstorms—Interactive comment on “Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming is highly dangerous” by J. Hansen et al. Atmos. Chem. Phys. 2015, 15, C6270–C6281. [Google Scholar]
- Rovere, A.; Casella, E.; Harris, D.L.; Lorscheid, T.; Nandasena, N.A.K.; Dyer, B.; Sandstrom, M.R.; Stocchi, P.; D’Andrea, W.J.; Raymo, M.E. Giant boulders and Last Interglacial storm intensity in the North Atlantic. Proc. Natl. Acad. Sci. USA 2017, 114, 12144–12149. [Google Scholar] [CrossRef] [Green Version]
- Ruban, D.A. Coastal boulder deposits of the Neogene world: A synopsis. J. Mar. Sci. Eng. 2019, 7, 446. [Google Scholar] [CrossRef] [Green Version]
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust. to 75% | Weight (kg) | EWH Nott [37] | EWH Pepe et al. [38] |
---|---|---|---|---|---|---|---|---|
1 | 28.0 | 24.5 | 6.0 | 4116 | 3087 | 9.3 | 3.1 | 1.5 |
2 | 32.0 | 24.0 | 8.0 | 6144 | 4608 | 13.8 | 3.5 | 2.0 |
3 | 30.0 | 23.0 | 10.5 | 7245 | 5434 | 16.3 | 3.3 | 2.6 |
4 | 26.0 | 17.5 | 8.0 | 3640 | 2730 | 8.2 | 2.8 | 2.0 |
5 | 24.5 | 18.5 | 9.0 | 4079 | 3059 | 9.2 | 2.7 | 2.2 |
6 | 28.0 | 24.5 | 8.0 | 5488 | 4116 | 12.3 | 3.1 | 2.0 |
7 | 48.0 | 23.0 | 19.0 | 20,976 | 15,732 | 47.2 | 5.2 | 4.7 |
8 | 44.0 | 37.0 | 8.0 | 13,024 | 9768 | 29.3 | 4.8 | 2.0 |
9 | 43.0 | 29.0 | 8.0 | 9976 | 7482 | 22.4 | 4.7 | 2.0 |
10 | 38.0 | 25.0 | 7.5 | 7125 | 5344 | 16.0 | 4.1 | 1.8 |
11 | 39.5 | 27.0 | 11.0 | 11,732 | 8799 | 26.4 | 4.3 | 2.7 |
12 | 31.0 | 23.0 | 6.5 | 4635 | 3476 | 10.4 | 3.4 | 1.6 |
13 | 23.0 | 18.5 | 8.5 | 3617 | 2713 | 8.1 | 2.5 | 2.1 |
14 | 31.0 | 28.0 | 12.0 | 10,416 | 7812 | 23.4 | 3.4 | 3.0 |
15 | 28.0 | 20.5 | 9.0 | 5166 | 3875 | 11.6 | 3.1 | 2.2 |
16 | 34.5 | 25.5 | 13.0 | 11,437 | 8578 | 25.7 | 3.8 | 3.2 |
17 | 32.0 | 26.0 | 9.0 | 7488 | 5616 | 16.8 | 3.5 | 2.2 |
18 | 26.0 | 17.0 | 16.0 | 7072 | 5304 | 15.9 | 2.8 | 3.9 |
19 | 24.5 | 19.0 | 8.0 | 3724 | 2793 | 8.4 | 2.7 | 2.0 |
20 | 43.0 | 27.0 | 26.0 | 30,186 | 22,640 | 67.9 | 4.7 | 6.4 |
21 | 42.0 | 34.0 | 16.0 | 22,848 | 17,136 | 51.4 | 4.6 | 3.90 |
22 | 32.0 | 23.0 | 22.0 | 16,192 | 12,144 | 36.4 | 3.5 | 5.4 |
23 | 43.5 | 22.5 | 20.0 | 19,575 | 14,681 | 44.0 | 4.7 | 4.9 |
24 | 31.0 | 24.0 | 17.0 | 12,648 | 9486 | 28.5 | 3.4 | 4.2 |
25 | 13.0 | 10.0 | 8.5 | 1105 | 829 | 2.5 | 1.4 | 2.1 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust. to 75% | Weight (kg) | EWH Nott, [37] | EWH Pepe et al. [38] |
---|---|---|---|---|---|---|---|---|
1 | 12.5 | 11.0 | 8.5 | 1169 | 877 | 2.6 | 1.4 | 2.1 |
2 | 8.5 | 6.0 | 4.0 | 204 | 153 | 0.5 | 0.9 | 1.0 |
3 | 8.0 | 5.0 | 4.0 | 160 | 120 | 0.4 | 0.9 | 1.0 |
4 | 12.0 | 8.5 | 6.5 | 663 | 497 | 1.5 | 1.3 | 1.6 |
5 | 10.5 | 6.5 | 4.0 | 273 | 205 | 0.6 | 1.1 | 1.0 |
6 | 13.0 | 11.0 | 10.5 | 1502 | 1126 | 3.4 | 1.4 | 2.6 |
7 | 9.0 | 8.0 | 3.0 | 216 | 162 | 0.5 | 1.0 | 0.7 |
8 | 25.0 | 13.5 | 13.0 | 4388 | 3291 | 9.9 | 2.7 | 3.2 |
9 | 10.0 | 7.0 | 6.0 | 420 | 315 | 0.9 | 1.1 | 1.5 |
10 | 8.0 | 5.0 | 4.0 | 160 | 120 | 0.4 | 0.9 | 1.0 |
11 | 9.0 | 5.0 | 4.5 | 203 | 152 | 0.5 | 1.0 | 1.1 |
12 | 10.0 | 8.0 | 6.0 | 480 | 360 | 1.1 | 1.1 | 1.5 |
13 | 11.0 | 7.0 | 4.0 | 308 | 231 | 0.7 | 1.2 | 1.0 |
14 | 16.5 | 10.5 | 5.0 | 866 | 650 | 1.9 | 1.8 | 1.2 |
15 | 8.5 | 5.5 | 2.0 | 94 | 70 | 0.2 | 0.9 | 0.5 |
16 | 15.0 | 6.0 | 5.0 | 450 | 338 | 1.0 | 1.6 | 1.2 |
17 | 14.5 | 7.5 | 5.0 | 544 | 408 | 1.2 | 1.6 | 1.2 |
18 | 8.5 | 5.5 | 2.5 | 117 | 88 | 0.3 | 0.9 | 0.6 |
19 | 9.0 | 5.5 | 4.5 | 223 | 167 | 0.5 | 1.0 | 1.1 |
20 | 10.5 | 8.0 | 4.5 | 378 | 284 | 0.9 | 1.1 | 1.1 |
21 | 7.0 | 5.5 | 3.0 | 116 | 87 | 0.3 | 0.8 | 0.7 |
22 | 12.0 | 7.5 | 5.5 | 495 | 371 | 1.1 | 1.3 | 1.4 |
23 | 9.0 | 5.5 | 3.0 | 149 | 111 | 0.3 | 1.0 | 0.7 |
24 | 14.5 | 8.5 | 4.0 | 493 | 370 | 1.1 | 1.6 | 1.0 |
25 | 20.5 | 11.0 | 8.0 | 1804 | 1353 | 4.1 | 2.2 | 2.0 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust. to 75% | Weight (kg) | EWH Nott, [37] | EWH Pepe et al. [38] |
---|---|---|---|---|---|---|---|---|
1 | 50.0 | 15.0 | 11.0 | 8250 | 6188 | 18.6 | 5.5 | 2.7 |
2 | 35.0 | 14.0 | 14.0 | 6860 | 5145 | 15.4 | 3.8 | 3.4 |
3 | 25.0 | 22.0 | 6.0 | 3300 | 2475 | 7.4 | 2.7 | 1.5 |
4 | 27.5 | 13.0 | 5.0 | 1788 | 1341 | 4.0 | 3.0 | 1.2 |
5 | 18.0 | 15.0 | 4.0 | 1080 | 810 | 2.4 | 2.0 | 1.0 |
6 | 23.5 | 19.0 | 6.0 | 2679 | 2009 | 6.0 | 2.6 | 1.5 |
7 | 22.5 | 20.0 | 10.0 | 4500 | 3375 | 10.1 | 2.5 | 2.5 |
8 | 32.0 | 29.5 | 7.0 | 6608 | 4956 | 14.9 | 3.5 | 1.7 |
9 | 32.0 | 17.0 | 11.0 | 5984 | 4488 | 13.5 | 3.5 | 2.7 |
10 | 31.0 | 16.0 | 12.5 | 6200 | 4650 | 14.0 | 3.4 | 3.1 |
11 | 25.0 | 16.0 | 5.0 | 2000 | 1500 | 4.5 | 2.7 | 1.2 |
12 | 22.0 | 20.0 | 9.0 | 3960 | 2970 | 8.9 | 2.4 | 2.2 |
13 | 27.0 | 18.5 | 5.0 | 2498 | 1873 | 5.6 | 2.9 | 1.2 |
14 | 20.0 | 14.0 | 9.0 | 2520 | 1890 | 5.7 | 2.2 | 2.2 |
15 | 23.0 | 15.5 | 6.0 | 2139 | 1604 | 4.8 | 2.5 | 1.5 |
16 | 21.0 | 13.5 | 4.3 | 1219 | 914 | 2.7 | 2.3 | 1.1 |
17 | 22.0 | 20.0 | 9.0 | 3960 | 2970 | 8.9 | 2.4 | 2.2 |
18 | 18.0 | 17.5 | 6.5 | 2048 | 1536 | 4.6 | 2.0 | 1.6 |
19 | 26.0 | 16.5 | 12.5 | 5363 | 4022 | 12.1 | 2.8 | 3.1 |
20 | 24.0 | 21.0 | 7.0 | 3528 | 2646 | 7.9 | 2.6 | 1.7 |
21 | 25.5 | 15.0 | 15.0 | 5738 | 4303 | 12.9 | 2.8 | 3.7 |
22 | 19.0 | 12.5 | 4.5 | 1069 | 802 | 2.4 | 2.1 | 1.1 |
23 | 21.0 | 12.5 | 5.0 | 1313 | 984 | 3.0 | 2.3 | 1.2 |
24 | 20.5 | 11.5 | 9.0 | 2122 | 1591 | 4.8 | 2.2 | 2.2 |
25 | 27.5 | 18.0 | 7.5 | 3713 | 2784 | 8.4 | 3.0 | 1.8 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust. to 75% | Weight (kg) | EWH Nott, [37] | EWH Pepe et al. [38] |
---|---|---|---|---|---|---|---|---|
1 | 39.0 | 35.0 | 33.0 | 45,045 | 33,784 | 101.4 | 4.3 | 8.1 |
2 | 49.0 | 32.0 | 25.0 | 39,200 | 29,400 | 88.2 | 5.3 | 6.2 |
3 | 17.0 | 15.0 | 6.0 | 1530 | 1148 | 3.4 | 1.9 | 1.5 |
4 | 15.0 | 8.0 | 7.5 | 900 | 675 | 2.0 | 1.6 | 1.8 |
5 | 32.0 | 30.0 | 16.0 | 15,360 | 11,520 | 34.6 | 3.5 | 3.9 |
6 | 22.0 | 15.0 | 10.0 | 3300 | 2475 | 7.4 | 2.4 | 2.5 |
7 | 29.0 | 20.0 | 17.0 | 9860 | 7395 | 22.2 | 3.2 | 4.2 |
8 | 11.0 | 10.0 | 8.5 | 935 | 701 | 2.1 | 1.2 | 2.1 |
9 | 25.0 | 17.0 | 14.0 | 5950 | 4463 | 13.4 | 2.7 | 3.4 |
10 | 25.0 | 22.5 | 19.0 | 10,688 | 8016 | 24.0 | 2.7 | 4.7 |
11 | 33.0 | 28.0 | 20.0 | 18,480 | 13,860 | 41.6 | 3.6 | 4.9 |
12 | 23.0 | 16.0 | 10.0 | 3680 | 2760 | 8.3 | 2.5 | 2.5 |
13 | 20.0 | 14.0 | 9.0 | 2520 | 1890 | 5.7 | 2.2 | 2.2 |
14 | 30.0 | 20.0 | 14.0 | 8400 | 6300 | 18.9 | 3.3 | 3.4 |
15 | 14.0 | 12.0 | 10.0 | 1680 | 1260 | 3.8 | 1.5 | 2.5 |
16 | 18.5 | 20.0 | 13.0 | 4810 | 3608 | 10.8 | 2.0 | 3.2 |
17 | 14.0 | 10.5 | 7.0 | 1029 | 772 | 2.3 | 1.5 | 1.7 |
18 | 32.5 | 18.0 | 15.0 | 8775 | 6581 | 19.7 | 3.5 | 3.7 |
19 | 22.5 | 18.0 | 11.0 | 4455 | 3341 | 10.0 | 2.5 | 2.7 |
20 | 17.0 | 12.0 | 12.0 | 2448 | 1836 | 5.5 | 1.9 | 3.0 |
21 | 15.0 | 14.0 | 10.0 | 2100 | 1575 | 4.7 | 1.6 | 2.5 |
22 | 28.0 | 20.0 | 12.0 | 6720 | 5040 | 15.1 | 3.1 | 3.0 |
23 | 25.0 | 25.0 | 14.0 | 8750 | 6563 | 19.7 | 2.7 | 3.4 |
24 | 35.0 | 20.0 | 10.0 | 7000 | 5250 | 15.8 | 3.8 | 2.5 |
25 | 32.0 | 24.0 | 14.0 | 10,752 | 8064 | 24.2 | 3.5 | 3.4 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust. to 75% | Weight (kg) | EWH Nott, [37] | EWH Pepe et al. [38] |
---|---|---|---|---|---|---|---|---|
1 | 32.0 | 20.0 | 16.0 | 10,240 | 7680 | 23.0 | 3.5 | 3.9 |
2 | 18.0 | 12.0 | 9.0 | 1944 | 1458 | 4.4 | 2.0 | 2.2 |
3 | 15.0 | 10.0 | 9.0 | 1350 | 1013 | 3.0 | 1.6 | 2.2 |
4 | 25.0 | 15.0 | 14.0 | 5250 | 3938 | 11.8 | 2.7 | 3.4 |
5 | 25.0 | 19.0 | 12.0 | 5700 | 4275 | 12.8 | 2.7 | 3.0 |
6 | 49.0 | 32.0 | 28.0 | 43,904 | 32,928 | 98.8 | 5.3 | 6.9 |
7 | 32.0 | 15.0 | 13.0 | 6240 | 4680 | 14.0 | 3.5 | 3.2 |
8 | 15.0 | 12.0 | 7.0 | 1260 | 945 | 2.8 | 1.6 | 1.7 |
9 | 11.0 | 6.0 | 5.0 | 330 | 248 | 0.7 | 1.2 | 1.2 |
10 | 11.0 | 11.0 | 4.0 | 484 | 363 | 1.1 | 1.2 | 1.0 |
11 | 16.0 | 9.0 | 8.0 | 1152 | 864 | 2.6 | 1.7 | 2.0 |
12 | 23.0 | 11.0 | 6.0 | 1518 | 1139 | 3.4 | 2.5 | 1.5 |
13 | 12.0 | 10.0 | 6.0 | 720 | 540 | 1.6 | 1.3 | 1.5 |
14 | 23.0 | 14.5 | 14.0 | 4669 | 3502 | 10.5 | 2.5 | 3.4 |
15 | 10.0 | 6.5 | 3.0 | 195 | 146 | 0.4 | 1.1 | 0.7 |
16 | 8.0 | 6.0 | 3.0 | 144 | 108 | 0.3 | 0.9 | 0.7 |
17 | 10.0 | 8.0 | 6.0 | 480 | 360 | 1.1 | 1.1 | 1.5 |
18 | 9.5 | 6.0 | 4.5 | 257 | 192 | 0.6 | 1.0 | 1.1 |
19 | 11.0 | 9.0 | 5.0 | 495 | 371 | 1.1 | 1.2 | 1.2 |
20 | 12.0 | 5.5 | 5.0 | 330 | 248 | 0.7 | 1.3 | 1.2 |
21 | 11.0 | 5.5 | 5.5 | 333 | 250 | 0.7 | 1.2 | 1.4 |
22 | 17.0 | 7.0 | 6.5 | 774 | 580 | 1.7 | 1.9 | 1.6 |
23 | 21.0 | 13.0 | 10.0 | 2730 | 2048 | 6.1 | 2.3 | 2.5 |
24 | 15.5 | 8.5 | 6.0 | 791 | 593 | 1.8 | 1.7 | 1.5 |
25 | 13.0 | 10.0 | 8.5 | 1105 | 829 | 2.5 | 1.4 | 2.1 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust. to 75% | Weight (kg) | EWH Nott, [37] | EWH Pepe et al. [38] |
---|---|---|---|---|---|---|---|---|
1 | 20.0 | 18.0 | 9.0 | 3240 | 2430 | 7.3 | 2.2 | 2.2 |
2 | 13.5 | 12.5 | 5.0 | 844 | 633 | 1.9 | 1.5 | 1.2 |
3 | 26.5 | 19.0 | 8.0 | 4028 | 3021 | 9.1 | 2.9 | 2.0 |
4 | 29.0 | 11.5 | 10.0 | 3335 | 2501 | 7.5 | 3.2 | 2.5 |
5 | 23.0 | 23.0 | 13.0 | 6877 | 5158 | 15.5 | 2.5 | 3.2 |
6 | 20.0 | 19.0 | 10.0 | 3800 | 2850 | 8.6 | 2.2 | 2.5 |
7 | 25.0 | 21.0 | 9.0 | 4725 | 3544 | 10.6 | 2.7 | 2.2 |
8 | 20.0 | 10.5 | 8.0 | 1680 | 1260 | 3.8 | 2.2 | 2.0 |
9 | 40.0 | 21.5 | 17.0 | 14,620 | 10,965 | 32.9 | 4.4 | 4.2 |
10 | 18.0 | 13.0 | 12.0 | 2808 | 2106 | 6.3 | 2.0 | 3.0 |
11 | 19.0 | 17.0 | 12.0 | 3876 | 2907 | 8.7 | 2.1 | 3.0 |
12 | 28.0 | 21.0 | 15.0 | 8820 | 6615 | 19.8 | 3.1 | 3.7 |
13 | 28.5 | 19.0 | 16.0 | 8664 | 6498 | 19.5 | 3.1 | 3.9 |
14 | 35.5 | 18.0 | 15.0 | 9585 | 7189 | 21.6 | 3.9 | 3.7 |
15 | 26.0 | 24.0 | 15.0 | 9360 | 7020 | 21.1 | 2.8 | 3.7 |
16 | 19.0 | 12.0 | 8.0 | 1824 | 1368 | 4.1 | 2.1 | 2.0 |
17 | 14.0 | 8.0 | 7.5 | 840 | 630 | 1.9 | 1.5 | 1.8 |
18 | 23.5 | 17.0 | 15.0 | 5993 | 4494 | 13.5 | 2.6 | 3.7 |
19 | 15.0 | 12.0 | 6.0 | 1080 | 810 | 2.4 | 1.6 | 1.5 |
20 | 30.0 | 26.0 | 26.0 | 20,280 | 15,210 | 45.6 | 3.3 | 6.4 |
21 | 27.0 | 15.0 | 15.0 | 6075 | 4556 | 13.7 | 2.9 | 3.7 |
22 | 20.0 | 12.0 | 10.0 | 2400 | 1800 | 5.4 | 2.2 | 2.5 |
23 | 17.0 | 12.0 | 8.0 | 1632 | 1224 | 3.7 | 1.9 | 2.0 |
24 | 31.0 | 17.0 | 11.0 | 5797 | 4348 | 13.0 | 3.4 | 2.7 |
25 | 56.0 | 36.0 | 16.0 | 32,256 | 24,192 | 72.6 | 6.1 | 3.9 |
Sample | Long Axis (cm) | Intermediate Axis (cm) | Short Axis (cm) | Volume (cm3) | Adjust. to 75% | Weight (kg) | EWH Nott, [37] | EWH Pepe et al. [38] |
---|---|---|---|---|---|---|---|---|
1 | 50.0 | 40.0 | 25.0 | 50,000 | 37,500 | 112.5 | 5.5 | 6.2 |
2 | 28.0 | 24.5 | 20.0 | 13,720 | 10,290 | 30.9 | 3.1 | 4.9 |
3 | 50.0 | 36.0 | 22.0 | 39,600 | 29,700 | 89.1 | 5.5 | 5.4 |
4 | 27.0 | 21.0 | 10.0 | 5670 | 4253 | 12.8 | 2.9 | 2.5 |
5 | 38.0 | 21.0 | 20.0 | 15,960 | 11,970 | 35.9 | 4.1 | 4.9 |
6 | 26.0 | 18.5 | 13.0 | 6253 | 4690 | 14.1 | 2.8 | 3.2 |
7 | 17.0 | 15.0 | 11.0 | 2805 | 2104 | 6.3 | 1.9 | 2.7 |
8 | 27.0 | 23.0 | 13.5 | 8384 | 6288 | 18.9 | 2.9 | 3.3 |
9 | 38.0 | 32.0 | 23.0 | 27,968 | 20,976 | 62.9 | 4.1 | 5.7 |
10 | 20.0 | 16.0 | 7.5 | 2400 | 1800 | 5.4 | 2.2 | 1.8 |
11 | 41.0 | 26.0 | 25.0 | 26,650 | 19,988 | 60.0 | 4.5 | 6.2 |
12 | 27.0 | 22.0 | 20.0 | 11,880 | 8910 | 26.7 | 2.9 | 4.9 |
13 | 26.0 | 20.0 | 15.0 | 7800 | 5850 | 17.6 | 2.8 | 3.7 |
14 | 25.0 | 16.0 | 9.0 | 3600 | 2700 | 8.1 | 2.7 | 2.2 |
15 | 20.0 | 15.0 | 9.0 | 2700 | 2025 | 6.1 | 2.2 | 2.2 |
16 | 19.0 | 16.0 | 10.0 | 3040 | 2280 | 6.8 | 2.1 | 2.5 |
17 | 15.0 | 10.5 | 10.0 | 1575 | 1181 | 3.5 | 1.6 | 2.5 |
18 | 16.5 | 13.0 | 6.0 | 1287 | 965 | 2.9 | 1.8 | 1.5 |
19 | 16.0 | 11.5 | 3.0 | 552 | 414 | 1.2 | 1.7 | 0.7 |
20 | 14.0 | 9.0 | 7.5 | 945 | 709 | 2.1 | 1.5 | 1.8 |
21 | 15.5 | 11.0 | 8.0 | 1364 | 1023 | 3.1 | 1.7 | 2.0 |
22 | 21.0 | 17.5 | 15.5 | 5696 | 4272 | 12.8 | 2.3 | 3.8 |
23 | 29.0 | 16.0 | 9.0 | 4176 | 3132 | 9.4 | 3.2 | 2.2 |
24 | 22.5 | 14.0 | 12.0 | 3780 | 2835 | 8.5 | 2.5 | 3.0 |
25 | 30.0 | 21.0 | 13.0 | 8190 | 6143 | 18.4 | 3.3 | 3.2 |
Transect | Locality | Age of the CBD | Average Boulder Size (cm3) | Average Boulder Weight (kg) | Max Boulder Weight (kg) | EAWH Nott, [37] | EAWH Pepe et al. [38] | EMWH Nott, [37] | EMWH Pepe et al. [38] |
---|---|---|---|---|---|---|---|---|---|
1 | Prainha | Modern | 7490 | 22.5 | 67.9 | 3.6 | 2.9 | 5.2 | 6.4 |
2 | Prainha | MIS 5e | 476 | 1.4 | 9.9 | 1.3 | 1.3 | 2.7 | 3.2 |
3 | Ponta do Castelo | Modern | 2713 | 8.1 | 18.6 | 2.8 | 2.0 | 5.5 | 3.7 |
4 | Ponta do Castelo | MIS 5e | 6731 | 20.2 | 101.4 | 2.7 | 3.3 | 5.3 | 8.1 |
5 | Ponta do Cedro | MIS 5e | 2772 | 8.3 | 98.8 | 1.9 | 2.1 | 5.3 | 6.9 |
6 | Ponta do Cedro | MIS 5e | 4933 | 14.8 | 72.6 | 2.7 | 2.9 | 6.1 | 6.4 |
7 | Ponta do Cedro | MIS 5e | 7680 | 23.0 | 112.5 | 2.9 | 3.3 | 5.5 | 6.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila, S.P.; Johnson, M.E.; Rebelo, A.C.; Baptista, L.; Melo, C.S. Comparison of Modern and Pleistocene (MIS 5e) Coastal Boulder Deposits from Santa Maria Island (Azores Archipelago, NE Atlantic Ocean). J. Mar. Sci. Eng. 2020, 8, 386. https://doi.org/10.3390/jmse8060386
Ávila SP, Johnson ME, Rebelo AC, Baptista L, Melo CS. Comparison of Modern and Pleistocene (MIS 5e) Coastal Boulder Deposits from Santa Maria Island (Azores Archipelago, NE Atlantic Ocean). Journal of Marine Science and Engineering. 2020; 8(6):386. https://doi.org/10.3390/jmse8060386
Chicago/Turabian StyleÁvila, Sérgio P., Markes E. Johnson, Ana Cristina Rebelo, Lara Baptista, and Carlos S. Melo. 2020. "Comparison of Modern and Pleistocene (MIS 5e) Coastal Boulder Deposits from Santa Maria Island (Azores Archipelago, NE Atlantic Ocean)" Journal of Marine Science and Engineering 8, no. 6: 386. https://doi.org/10.3390/jmse8060386
APA StyleÁvila, S. P., Johnson, M. E., Rebelo, A. C., Baptista, L., & Melo, C. S. (2020). Comparison of Modern and Pleistocene (MIS 5e) Coastal Boulder Deposits from Santa Maria Island (Azores Archipelago, NE Atlantic Ocean). Journal of Marine Science and Engineering, 8(6), 386. https://doi.org/10.3390/jmse8060386