Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviations | Meaning |
IMO | International Maritime Organization |
MDO | Marine diesel oil |
M | Methanol |
B | Biodiesel |
B6.8 | Blend that contains 6.8% biodiesel (volume basis) |
B10 | Blend that contains 10% biodiesel (volume basis) |
References
- Svanberg, M.; Ellis, J.; Lundgren, J.; Landval, I. Renewable methanol as a fuel for the shipping industry. Renew. Sustain. Energy Rev. 2018, 94, 1217–1228. [Google Scholar] [CrossRef]
- Sahin, B.; Yilmaz, H.; Ust, Y.; Fuat Guneri, A.; Gulsun, B.; Turan, E. An Approach for Economic Analysis of Intermodal Transportation. Sci. World J. 2014, 630320. [Google Scholar] [CrossRef]
- Bialystocki, N.; Konovessis, D. On the estimation of ship’s fuel consumption and speed curve: A statistical approach. J. Ocean Eng. Sci. 2016, 1, 157–166. [Google Scholar] [CrossRef]
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- World Health Organization. Air Pollution. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 14 August 2020).
- Zhang, Q.; Jiang, X.; Tong, D.; Davis, S.J.; Zhao, H.; Geng, G.; Feng, T.; Zheng, B.; Lu, Z.; Streets, D.G.; et al. Transboundary health impacts of transported global air pollution and international trade. Nature 2017, 543, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Zannis, T.C.; Yfantis, E.A.; Pagagiannakis, R.; Levendis, Y. Chapter 1: Critical Review of Conventional Fuel Composition and Properties on Diesel Engine Performance and Pollutant Emissions. In Diesel Fuels: Characteristics, Performance and Environmental Impacts; Silva, C., Rivera, A., Eds.; Nova Science Publishers: New York, NY, USA, 2013. [Google Scholar]
- Erdiwansyah, M.R.; Sani, M.S.; Sudhakar, K.; Sardjono, R.E. An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Rep. 2019, 5, 467–479. [Google Scholar] [CrossRef]
- Kumar Agarwal, A. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Bušić, A.; Marđetko, N.; Kundas, S.; Morzak, G.; Belskaya, H.; Ivančić Šantek, M.; Komes, D.; Novak, S.; Šantek, B. Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food Technol. Biotechnol. 2018, 56, 289–311. [Google Scholar] [CrossRef]
- Kalligeros, S.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G.; Teas, C.; Sakellaropoulos, F. An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass Bioenergy 2003, 24, 141–149. [Google Scholar] [CrossRef]
- Morone, P.; Strzalkowski, A.; Tani, A. Chapter 2—Biofuel transitions: An overview of regulations and standards for a more sustainable framework. In Biofuels for a More Sustainable Future—Life Cycle Sustainability Assessment and Multi-Criteria Decision Making; Ren, J., Scipioini, A., Manzardo, A., Liang, H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 21–46. [Google Scholar] [CrossRef]
- Mishra, V.K.; Goswami, R. A review of production properties and advantages of biodiesel. Biofuels 2018, 9, 273–289. [Google Scholar] [CrossRef]
- Pollitt, K.J.G.; Chhan, D.; Rais, K.; Pan, K.; Wallace, J.S. Biodiesel fuels: A greener diesel? A review from a health perspective. Sci. Total Environ. 2019, 688, 1036–1055. [Google Scholar] [CrossRef] [PubMed]
- Bos, M.J.; Kersten, S.R.A.; Brilman, D.W.F. Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture. Appl. Energy 2020, 264, 114672. [Google Scholar] [CrossRef]
- Shamsul, N.S.; Kamarudin, S.K.; Rahman, N.A.; Kofli, N.T. An overview on the production of bio-methanol as potential renewable energy. Renew. Sustain. Energy Rev. 2014, 33, 578–588. [Google Scholar] [CrossRef]
- Hajba, L.; Eller, Z.; Nagy, E.; Hancsok, J. Properties of diesel–alcohol blends. Hung. J. Ind. Chem. 2011, 39, 349–352. [Google Scholar]
- Yasin, M.H.; Mamat, R.; Aziza, A.; Najafi, G. Comparative Study on Biodiesel-methanol-diesel Low Proportion Blends Operating with a Diesel Engine. Energy Procedia 2015, 75, 10–16. [Google Scholar] [CrossRef]
- Niculescu, R.; Clenci, A.; Iorga-Siman, V. Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines. Energies 2019, 12, 1194. [Google Scholar] [CrossRef]
- Lapuerta, M.; Armas, O.; Garcia-Contreras, R. Stability of diesel–bioethanol blends for use in diesel engines. Fuel 2007, 86, 1351–1357. [Google Scholar] [CrossRef]
- Kumar, S.; Cho, J.H.; Park, J.; Moon, I. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines. Renew. Sustain. Energy Rev. 2013, 22, 46–72. [Google Scholar] [CrossRef]
- Amine, M.; Barakat, Y. Properties of gasoline-ethanol-methanol ternary fuel blend compared with ethanol-gasoline and methanol-gasoline fuel blends. Egypt. J. Pet. 2019, 28, 371–376. [Google Scholar] [CrossRef]
- Imdadul, H.K.; Masjuki, H.H.; Kalam, M.A.; Zulkifli, N.W.M.; Alabdulkarem, A.; Rashed, M.M.; Ashrafu, A.M. Influences of ignition improver additive on ternary (diesel-biodiesel-higher alcohol) blends thermal stability and diesel engine performance. Energy Convers. Manag. 2016, 123, 252–264. [Google Scholar] [CrossRef]
- Fan, C.; Song, C.; Lv, G.; Wang, G.; Zhou, H.; Jing, X. Evaluation of carbonyl compound emissions from a non-road machinery diesel engine fueled with a methanol/diesel blend. Appl. Therm. Eng. 2018, 129, 1382–1391. [Google Scholar] [CrossRef]
- Kuszewski, H. Effect of adding 2-ethylhexyl nitrate cetane improver on the autoignition properties of ethanol-diesel fuel blend—Investigation at various ambient gas temperatures. Fuel 2018, 224, 57–67. [Google Scholar] [CrossRef]
- Lin, C.-Y. Blending biodiesel in fishing boat fuels for improved fuel characteristics. Front. Energy Res. 2014, 2, 6. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Tabatabaei, M.; Aghbashlo, M.; Khanali, M.; Demirbas, A. A comprehensive review on the environmental impacts of diesel/biodiesel additives. Energy Convers. Manag. 2018, 174, 579–614. [Google Scholar] [CrossRef]
- Greenacre, M.; Primicerio, R. Multivariate Analysis of Ecologic Data; Fundacion BBVA: Bilbao, Spain, 2013. [Google Scholar]
- Zuur, A.; Ieno, E.N.; Smith, G.M. Analysing Ecological Data; Springer: New York, NY, USA, 2007; p. 667. [Google Scholar]
- Oksanen, J.; Guillaume Blanchet, F.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 1 September 2019).
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 1 April 2020).
- Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. R package version 1.4.4. 2020. Available online: https://CRAN.R-project.org/package=PMCMRplus (accessed on 12 September 2020).
- Duraisamy, G.; Rangasamy, M.; Govindan, N. A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renew. Energy 2020, 145, 542–556. [Google Scholar] [CrossRef]
- Tian, J.; Tan, J.; Hu, N.; Liu, T.; Wang, Y.; Zhong, H. Characteristics analysis for total volatile organic compounds emissions of methanol-diesel fuel. J. Energy Inst. 2018, 91, 527–533. [Google Scholar] [CrossRef]
- Mat Yasin, M.H.; Mamat, R.; Yusop, A.F.; Rahim, R.; Aziz, A.; Shah, L.A. Fuel Physical Characteristics of Biodiesl Blend Fuels with Alcohol as Additives. Procedia Eng. 2013, 53, 701–706. [Google Scholar] [CrossRef]
- Bhale, P.V.; Deshpande, N.V.; Thombre, S.B. Improving the low temperature properties of biodiesel. Renew. Energy 2009, 34, 794–800. [Google Scholar] [CrossRef]
- Singh, D.; Sharma, D.; Soni, S.L.; Sharma, S.; Kumar Sharma, P.; Jhalani, A. A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel 2019, 262, 116553. [Google Scholar] [CrossRef]
Parameter | Standards for Estimation of the Parameters | ISO 8217:2017 Limits (DMB Grade) | Measured Values for the Blend Components | ||
---|---|---|---|---|---|
Diesel | Biodiesel | Methanol | |||
Density at 15 °C, kg m−3 | EN ISO 3675:1999 | Max 900 | 843 ± 0.01 | 877 ± 0.01 | 797 ± 0.01 |
Kinematic viscosity at 40 °C, mm2 s−1 | EN ISO 3104:1994 | Min 2.00 | 2.80 ± 0.01 | 4.30 ± 0.01 | 1.01 ± 0.01 |
Max 11.00 | |||||
Distillation | ASTM D86-20 | - | 250 °C—33% | - | - |
350 °C—95% | |||||
Calculated cetane index | ASTM D976-06(16) | Min 35 | 51 | 50 | 5 |
Flash point, °C | EN ISO 2719:2016 | Min 60 | 62 | 120 ± 1 | 11 ± 1 |
Cloud point, °C | EN 3015:2019 | - | Minus 19 ± 1 | Minus 12 ± 1 | Minus 98 ± 1 |
Gross calorific value, MJ kg−1 | DIN 51900-3:2003 | - | - | 40 ± 0.01 | 23 ± 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Paulauskiene, T.; Uebe, J.; Bucas, M. Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications. J. Mar. Sci. Eng. 2020, 8, 730. https://doi.org/10.3390/jmse8090730
Wang Z, Paulauskiene T, Uebe J, Bucas M. Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications. Journal of Marine Science and Engineering. 2020; 8(9):730. https://doi.org/10.3390/jmse8090730
Chicago/Turabian StyleWang, Zhongcheng, Tatjana Paulauskiene, Jochen Uebe, and Martynas Bucas. 2020. "Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications" Journal of Marine Science and Engineering 8, no. 9: 730. https://doi.org/10.3390/jmse8090730
APA StyleWang, Z., Paulauskiene, T., Uebe, J., & Bucas, M. (2020). Characterization of Biomethanol–Biodiesel–Diesel Blends as Alternative Fuel for Marine Applications. Journal of Marine Science and Engineering, 8(9), 730. https://doi.org/10.3390/jmse8090730