Emersion-Associated Responses of an Intertidal Coral and Its Suitability for Transplantation to Ecologically Engineer Seawalls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Species and Sample Collection
2.2. Experimental Setup
2.3. RNA Extraction and Reverse Transcription (RT)
2.4. Primer Design, Validation and Primer Efficiency Determination
2.5. Quantification of Gene Expression
2.6. Photophysiological Analyses (Effective Quantum Yield of Photosystem II; Endosymbiont Density, Chlorophyll a Concentration)
2.7. Statistical Analyses
3. Results
3.1. Stress-Associated Gene Expression Responses
3.2. Photophysiological Responses (Effective Quantum Yield of Photosystem II (ΦPSII), Endosymbiont Density and chl a Concentration)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burke, L.; Reytar, K.; Spalding, M.; Perry, A. Reefs at Risk Revisited; World Resources Institute: Washington, DC, USA, 2011. [Google Scholar]
- Creel, L. Ripple Effects: Population and Coastal Regions. Available online: https://pdf.usaid.gov/pdf_docs/Pnadd169.pdf (accessed on 7 October 2021).
- Todd, P.A.; Heery, E.C.; Loke, L.H.L.; Thurstan, R.H.; Kotze, D.J.; Swan, C. Towards an Urban Marine Ecology: Characterizing the Drivers, Patterns and Processes of Marine Ecosystems in Coastal Cities. Oikos 2019, 128, 1215–1242. [Google Scholar] [CrossRef]
- Charlier, R.H.; Chaineux, M.C.P.; Morcos, S. Panorama of the History of Coastal Protection. J. Coast. Res. 2005, 211, 79–111. [Google Scholar] [CrossRef]
- Firth, L.B.; Knights, A.M.; Bridger, D.; Evans, A.J.; Mieszkowska, N.; Moore, P.J.; O’Connor, N.E.; Sheeham, E.V.; Thompson, R.C.; Hawkins, S.J. Ocean Sprawl: Challenges and Opportunities for Biodiversity Management in a Changing World. In Oceanography and Marine Biology: An Annual Review; Hughes., R.N., Hughes, D.J., Smith, I.P., Dale, A.C., Eds.; CRC Press: Boca Raton, FL, USA, 2016; Volume 54, pp. 193–269. [Google Scholar] [CrossRef]
- Lai, S.; Loke, L.H.L.; Hilton, M.J.; Bouma, T.J.; Todd, P.A. The Effects of Urbanisation on Coastal Habitats and the Potential for Ecological Engineering: A Singapore Case Study. Ocean Coast. Manag. 2015, 103, 78–85. [Google Scholar] [CrossRef]
- Loke, L.H.L.; Bouma, T.J.; Todd, P.A. The Effects of Manipulating Microhabitat Size and Variability on Tropical Seawall Biodiversity: Field and Flume Experiments. J. Exp. Mar. Bio. Ecol. 2017, 492, 113–120. [Google Scholar] [CrossRef]
- Morris, R.L.; Heery, E.C.; Loke, L.H.; Lau, E.; Strain, E.; Airoldi, L.; Alexander, K.A.; Bishop, M.J.; Coleman, R.A.; Cordell, J.R.; et al. Design Options, Implementation Issues and Evaluating Success of Ecologically Engineered Shorelines. Oceanography and Marine Biology: An Annual Review; CRC Press: Boca Raton, FL, USA, 2019; Volume 57. [Google Scholar]
- Firth, L.B.; Thompson, R.C.; Bohn, K.; Abbiati, M.; Airoldi, L.; Bouma, T.J.; Bozzeda, F.; Ceccherelli, V.U.; Colangelo, M.A.; Evans, A.; et al. Between a Rock and a Hard Place: Environmental and Engineering Considerations When Designing Coastal Defence Structures. Coast. Eng. 2014, 87, 122–135. [Google Scholar] [CrossRef]
- Perkol-finkel, S.; Hadary, T.; Rella, A.; Shirazi, R.; Sella, I. Design of Coastal and Marine Infrastructure. Ecol. Eng. 2017, 740, 139981. [Google Scholar] [CrossRef]
- Chapman, M.G.; Underwood, A.J. Evaluation of Ecological Engineering of “Armoured” Shorelines to Improve Their Value as Habitat. J. Exp. Mar. Bio. Ecol. 2011, 400, 302–313. [Google Scholar] [CrossRef]
- Loke, L.H.L.; Todd, P.A. Structural Complexity and Component Type Increase Intertidal Biodiversity Independently of Area. Ecology 2016, 97, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Moschella, P.S.; Abbiati, M.; Åberg, P.; Airoldi, L.; Anderson, J.M.; Bacchiocchi, F.; Bulleri, F.; Dinesen, G.E.; Frost, M.; Gacia, E.; et al. Low-Crested Coastal Defence Structures as Artificial Habitats for Marine Life: Using Ecological Criteria in Design. Coast. Eng. 2005, 52, 1053–1071. [Google Scholar] [CrossRef]
- Loke, L.H.L.; Heery, E.C.; Lai, S.; Bouma, T.J.; Todd, P.A. Area-Independent Effects of Water-Retaining Features on Intertidal Biodiversity on Eco-Engineered Seawalls in the Tropics. Front. Mar. Sci. 2019, 6, 16. [Google Scholar] [CrossRef]
- Ng, C.S.L.; Lim, S.C.; Ong, J.Y.; Teo, L.M.S.; Chou, L.M.; Chua, K.E.; Tan, K.S. Enhancing the Biodiversity of Coastal Defence Structures: Transplantation of Nursery-Reared Reef Biota onto Intertidal Seawalls. Ecol. Eng. 2015, 82, 480–486. [Google Scholar] [CrossRef]
- Toh, T.C.; Ng, C.S.; Loke, H.X.; Taira, D.; Toh, K.B.; Afiq-Rosli, L.; Du, R.C.; Cabaitan, P.; Sam, S.Q.; Kikuzawa, Y.P.; et al. A Cost-Effective Approach to Enhance Scleractinian Diversity on Artificial Shorelines. Ecol. Eng. 2017, 99, 349–357. [Google Scholar] [CrossRef]
- Wild, C.; Hoegh-Guldberg, O.; Naumann, M.S.; Colombo-Pallotta, M.F.; Ateweberhan, M.; Fitt, W.K.; Iglesias-Prieto, R.; Palmer, C.; Bythell, J.C.; Ortiz, J.C.; et al. Climate Change Impedes Scleractinian Corals as Primary Reef Ecosystem Engineers. Mar. Freshw. Res. 2011, 62, 205–215. [Google Scholar] [CrossRef]
- Nogueira, M.M.; Neves, E.; Johnsson, R. Effects of Habitat Structure on the Epifaunal Community in Mussismilia Corals: Does Coral Morphology Influence the Richness and Abundance of Associated Crustacean Fauna? Helgol. Mar. Res. 2015, 69, 221–229. [Google Scholar] [CrossRef]
- Castrillón-Cifuentes, A.L.; Lozano-Cortés, D.F.; Zapata, F.A. Effect of Short-Term Subaerial Exposure on the Cauliflower Coral, Pocillopora Damicornis, during a Simulated Extreme Low-Tide Event. Coral Reefs 2017, 36, 401–414. [Google Scholar] [CrossRef]
- Firth, L.B.; Schofield, M.; White, F.J.; Skov, M.W.; Hawkins, S.J. Biodiversity in Intertidal Rock Pools: Informing Engineering Criteria for Artificial Habitat Enhancement in the Built Environment. Mar. Environ. Res. 2014, 102, 122–130. [Google Scholar] [CrossRef]
- Romaine, S.; Tambutté, E.D.; Allemand, D.; Gattuso, J.-P. Photosynthesis, Respiration and Calcification of a Zooxanthellate Scleractinian Coral under Submerged and Exposed Conditions. Mar. Biol. 1997, 129, 175–182. [Google Scholar]
- Mieszkowska, N.; Firth, L.; Bentley, M. Impacts of Climate Change on Intertidal Habitats. MCCIP Sci. Rev. 2013, 2013, 180–192. [Google Scholar] [CrossRef]
- Pang, H.E.; Poquita-du, R.C.; Sanjeev, S.; Huang, D.; Todd, P.A. Among-Genotype Responses of the Coral Pocillopora Acuta to Emersion: Implications for the Ecological Engineering of Artificial Coastal Defences. Mar. Environ. Res. 2021, 168, 105312. [Google Scholar] [CrossRef]
- Bradshaw, A.D. Evolutionary Significance of Phenotypic Plasticity in Plants. In Advances in Genetics; Caspari, E.W., Thoday, J.M., Eds.; Academic Press: Cambridge, MA, USA, 1965; Volume 13, pp. 115–155. [Google Scholar] [CrossRef]
- Silvertown, J. Plant Phenotypic Plasticity and Non-Cognitive Behaviour. Trends Ecol. Evol. 1998, 13, 255–256. [Google Scholar] [CrossRef]
- Ghalambor, C.K.; McKay, J.K.; Carroll, S.P.; Reznick, D.N. Adaptive versus Non-Adaptive Phenotypic Plasticity and the Potential for Contemporary Adaptation in New Environments. Funct. Ecol. 2007, 21, 394–407. [Google Scholar] [CrossRef]
- Todd, P.A. Morphological Plasticity in Scleractinian Corals. Biol. Rev. 2008, 83, 315–337. [Google Scholar] [CrossRef]
- Lohr, K.E.; Patterson, J.T. Intraspecific Variation in Phenotype among Nursery-Reared Staghorn Coral Acropora Cervicornis (Lamarck, 1816). J. Exp. Mar. Bio. Ecol. 2017, 486, 87–92. [Google Scholar] [CrossRef]
- Stearns, S.C. The Evolutionary Significance of Phenotypic Plasticity: Phenotypic Sources of Variation among Organisms Can Be Described by Developmental Switches and Reaction Norms. Bioscience 1989, 39, 436–445. [Google Scholar] [CrossRef]
- Bay, L.K.; Ulstrup, K.E.; Nielsen, H.B.; Jarmer, H.; Goffard, N.; Willis, B.L.; Miller, D.J.; Van Oppen, M.J. Microarray Analysis Reveals Transcriptional Plasticity in the Reef Building Coral Acropora Millepora. Mol. Ecol. 2009, 18, 3062–3075. [Google Scholar] [CrossRef] [PubMed]
- Kenkel, C.D.; Aglyamova, G.; Alamaru, A.; Bhagooli, R.; Capper, R.; Cunning, R.; deVillers, A.; Haslun, J.A.; Hédouin, L.; Keshavmurthy, S.; et al. Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites. PLoS ONE 2011, 6, e26914. [Google Scholar] [CrossRef] [PubMed]
- Kenkel, C.D.; Matz, M.V. Gene Expression Plasticity as a Mechanism of Coral Adaptation to a Variable Environment. Nat. Ecol. Evol. 2016, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Poquita-Du, R.C.; Huang, D.; Chou, L.M.; Mrinalini; Todd, P.A. Short Term Exposure to Heat and Sediment Triggers Changes in Coral Gene Expression and Photo-Physiological Performance. Front. Mar. Sci. 2019, 6, 1227. [Google Scholar] [CrossRef]
- Poquita-Du, R.C.; Goh, Y.L.; Huang, D.; Chou, L.M.; Todd, P.A. Gene Expression and Photophysiological Changes in Pocillopora Acuta Coral Holobiont Following Heat Stress and Recovery. Microorganisms 2020, 8, 1227. [Google Scholar] [CrossRef]
- Kenkel, C.D.; Meyer, E.; Matz, M.V. Gene Expression under Chronic Heat Stress in Populations of the Mustard Hill Coral (Porites Astreoides) from Different Thermal Environments. Mol. Ecol. 2013, 22, 4322–4334. [Google Scholar] [CrossRef]
- Poli, D.; Fabbri, E.; Goffredo, S.; Airi, V.; Franzellitti, S. Physiological Plasticity Related to Zonation Affects hsp70 Expression in the Reef-Building Coral Pocillopora Verrucosa. PLoS ONE 2017, 12, e0171456. [Google Scholar] [CrossRef]
- Barshis, D.J.; Ladner, J.T.; Oliver, T.A.; Seneca, F.O.; Traylor-Knowles, N.; Palumbi, S.R. Genomic Basis for Coral Resilience to Climate Change. Proc. Natl. Acad. Sci. USA 2013, 110, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Howells, E.J.; Berkelmans, R.; van Oppen, M.J.H.; Willis, B.L.; Bay, L.K. Historical Thermal Regimes Define Limits to Coral Acclimatization. Ecology 2013, 94, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Chou, L.M. Marine Habitats in One of the World’s Busiest Harbours. In The Environment in Asia Pacific Harbours; Wolanski, E., Ed.; Springer: Dordrecht, the Netherlands, 2006. [Google Scholar] [CrossRef]
- Lee, Y.; Lam, S.Q.Y.; Yi, Q.; Teresa, L.; Tay, S.; Preslie, Y.; Koh, K.; Tan, S. Composition and Structure of Tropical Intertidal Hard Coral Communities on Natural and Man-Made Habitats. Coral Reefs 2021, 40, 685–700. [Google Scholar] [CrossRef]
- Ng, C.S.L.; Chen, D.; Chou, L.M. Hard Coral Assemblages on Seawalls in Singapore. In Contributions to Marine Science; Tan, K.S., Ed.; National University of Singapore: Singapore, 2012; pp. 75–79. [Google Scholar]
- Martime and Port Authority. Year 2019 Singapore Tide Tables; Hydrographic Division Maritime and Port Authority of Singapore: Singapore, 2019.
- Chow, G.S.E.; Chan, Y.K.S.; Jain, S.S.; Huang, D. Light Limitation Selects for Depth Generalists in Urbanised Reef Coral Communities. Mar. Environ. Res. 2019, 147, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Licuanan, W.Y.; Baird, A.H.; Fukami, H. Cleaning up the “Bigmessidae”: Molecular Phylogeny of Scleractinian Corals from Faviidae, Merulinidae, Pectiniidae and Trachyphylliidae. BMC Evol. Biol. 2011, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Riegl, B.; Riegl, A. How Episodic Coral Breakage Can Determine Community Structure: A South African Coral Reef Example. Mar. Ecol. 1996, 17, 399–410. [Google Scholar] [CrossRef]
- Foster, N.L.; Baums, I.B.; Mumby, P.J. Sexual vs. Asexual Reproduction in an Ecosystem Engineer: The Massive Coral Montastraea Annularis. J. Anim. Ecol. 2007, 76, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Highsmith, R. Reproduction by Fragmentation in Corals. Mar. Ecol. Prog. Ser. 1982, 7, 207–226. [Google Scholar] [CrossRef]
- Feldman, B.; Afiq-Rosli, L.; Simon-Blecher, N.; Bollati, E.; Wainwright, B.J.; Bongaerts, P.; Huang, D.; Levy, O. Distinct Lineages and Population Genomic Structure of the Coral Pachyseris Speciosa in the Small Equatorial Reef System of Singapore. Coral Reefs 2021. [Google Scholar] [CrossRef]
- Afiq-Rosli, L.; Wainwright, B.J.; Gajanur, A.R.; Lee, A.C.; Ooi, S.K.; Chou, L.M.; Huang, D. Barriers and Corridors of Gene Flow in an Urbanized Tropical Reef System. Evol. Appl. 2021, 1–14. [Google Scholar] [CrossRef]
- Bellantuono, A.J.; Granados-Cifuentes, C.; Miller, D.J.; Hoegh-Guldberg, O.; Rodriguez-Lanetty, M. Coral Thermal Tolerance: Tuning Gene Expression to Resist Thermal Stress. PLoS ONE 2012, 7, e50685. [Google Scholar] [CrossRef] [PubMed]
- Voolstra, C.R.; Miller, D.J.; Ragan, M.A.; Hoffmann, A.A.; Hoegh-Guldberg, O.; Bourne, D.G.; Ball, E.E.; Ying, H.; Forêt, S.; Takahashi, S.; et al. The ReFuGe 2020 Consortium-Using “Omics” Approaches to Explore the Adaptability and Resilience of Coral Holobionts to Environmental Change. Front. Mar. Sci. 2015, 2, 68. [Google Scholar] [CrossRef]
- Liew, Y.J.; Aranda, M.; Voolstra, C.R. Reefgenomics.Org-a Repository for Marine Genomics Data. Database 2016, 2016, baw152. [Google Scholar] [CrossRef]
- Bairoch, A.A.R. The SWISS-PROT Protein Sequence Database and Its Supplement TrEMBL in 2000. Nucleic Acids Res. 2000, 28, 45–48. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A New Mathematical Model for Relative Quantification in Real-Time RT-PCR. Nucleic Acids Res. 2001, 29, 45e. [Google Scholar] [CrossRef]
- Matz, M.V.; Wright, R.M.; Scott, J.G. No Control Genes Required: Bayesian Analysis of QRT-PCR Data. PLoS ONE 2013, 8, e71448. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. 2020. [Google Scholar] [CrossRef]
- Ralph, P.J.; Gademann, R.; Larkum, A.W.D.; Schreiber, U. In Situ Underwater Measurements of Photosynthetic Activity of Coral Zooxanthellae and Other Reef-Dwelling Dinoflagellate Endosymbionts. Mar. Ecol. Prog. Ser. 1999, 180, 139–147. [Google Scholar] [CrossRef]
- Ben-Haim, Y.; Zicherman-Keren, M.; Rosenberg, E. Temperature-Regulated Bleaching and Lysis of the Coral Pocillopora Damicornis by the Novel Pathogen Vibrio Coralliilyticus. Appl. Environ. Microbiol. 2003, 69, 4236–4242. [Google Scholar] [CrossRef]
- Jeffrey, S.W.; Humphrey, G.F. New Spectrophotometric Equations for Determining Chlorophylls a, b, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Kohler, K.E.; Gill, S.M. Coral Point Count with Excel Extensions (CPCe): A Visual Basic Program for the Determination of Coral and Substrate Coverage Using Random Point Count Methodology. Comput. Geosci. 2006, 32, 1259–1269. [Google Scholar] [CrossRef]
- Zuur, A.F.; Ieno, E.N.; Walker, N.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R, 1st ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means; R Package Version 1.6.0; 2019. Available online: https://github.com/rvlenth/emmeans (accessed on 7 October 2021).
- Leggat, W.; Seneca, F.; Wasmund, K.; Ukani, L.; Yellowlees, D.; Ainsworth, T.D. Differential Responses of the Coral Host and Their Algal Symbiont to Thermal Stress. PLoS ONE 2011, 6, e26687. [Google Scholar] [CrossRef] [PubMed]
- Seveso, D.; Montano, S.; Strona, G.; Orlandi, I.; Galli, P.; Vai, M. Hsp60 Expression Profiles in the Reef-Building Coral Seriatopora Caliendrum Subjected to Heat and Cold Shock Regimes. Mar. Environ. Res. 2016, 119, 118–123. [Google Scholar] [CrossRef]
- Voolstra, C.R.; Schnetzer, J.; Peshkin, L.; Randall, C.J.; Szmant, A.M.; Medina, M. Effects of Temperature on Gene Expression in Embryos of the Coral Montastraea Faveolata. BMC Genom. 2009, 10, 627. [Google Scholar] [CrossRef]
- Niyogi, K.K. Photoprotection Revisited: Genetic and Molecular Approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 333–359. [Google Scholar] [CrossRef]
- Warner, M.E.; Fitt, W.K.; Schmidt, G.W. The Effects of Elevated Temperature on the Photosynthetic Efficiency of Zooxanthellae in Hospite from Four Different Species of Reef Coral: A Novel Approach. Plant Cell Environ. 1996, 19, 291–299. [Google Scholar] [CrossRef]
- Roth, M.S. The Engine of the Reef: Photobiology of the Coral-Algal Symbiosis. Front. Microbiol. 2014, 5, 422. [Google Scholar] [CrossRef]
- Chow, A.M.; Ferrier-Pagès, C.; Khalouei, S.; Reynaud, S.; Brown, I.R. Increased Light Intensity Induces Heat Shock Protein Hsp60 in Coral Species. Cell Stress Chaperones 2009, 14, 469–476. [Google Scholar] [CrossRef]
- Ambarsari, I.; Brown, B.E.; Barlow, R.G.; Britton, G.; Cummings, D. Fluctuations in Algal Chlorophyll and Carotenoid Pigments during Solar Bleaching in the Coral Goniastrea Aspera at Phuket, Thailand. Mar. Ecol. Prog. Ser. 1997, 159, 303–307. [Google Scholar] [CrossRef]
- Venn, A.A.; Wilson, M.A.; Trapido-Rosenthal, H.G.; Keely, B.J.; Douglas, A.E. The Impact of Coral Bleaching on the Pigment Profile of the Symbiotic Alga, Symbiodinium. Plant Cell Environ. 2006, 29, 2133–2142. [Google Scholar] [CrossRef]
- Bowden-Kerby, A. Restoration of Threatened Acropora Cervicornis Corals: Intraspecific Variation as a Factor in Mortality, Growth, and Self-Attachment. In Proceedings of the 11th International Coral Reef Symposium, Lauderdale, FL, USA, 7–11 July 2008; pp. 1194–1198. [Google Scholar]
- Brown, B.E.; Dunne, R.P.; Phongsuwan, N.; Patchim, L.; Hawkridge, J.M. The Reef Coral Goniastrea Aspera: A “winner” Becomes a “Loser” during a Severe Bleaching Event in Thailand. Coral Reefs 2014, 33, 395–401. [Google Scholar] [CrossRef]
- Loya, Y.; Sakai, K.; Yamazato, K.; Nakano, Y.; Sambali, H.; Van Woesik, R. Coral Bleaching: The Winners and the Losers. Ecol. Lett. 2001, 4, 122–131. [Google Scholar] [CrossRef]
- Van Woesik, R.; Sakai, K.; Ganase, A.; Loya, Y. Revisiting the Winners and the Losers a Decade after Coral Bleaching. Mar. Ecol. Prog. Ser. 2011, 434, 67–76. [Google Scholar] [CrossRef]
- Fukami, H.; Budd, A.F.; Levitan, D.R.; Jara, J.; Kersanach, R.; Knowlton, N. Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 2004, 58, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Benzoni, F.; Arrigoni, R.; Baird, A.H.; Berumen, M.L.; Bouwmeester, J.; Chou, L.M.; Fukami, H.; Licuanan, W.Y.; Lovell, E.R.; et al. Towards a phylogenetic classification of reef corals: The Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool. Scr. 2014, 43, 531–548. [Google Scholar] [CrossRef]
- Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis, version 3.7. Available online: http://mesquiteproject.org (accessed on 5 October 2021).
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Katoh, K.; Asimenos, G.; Toh, H. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 2009, 537, 39–64. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Stamatakis, A. (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. J. Bioinform. 2006, 22, 2688–2690. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, M.; Carter, D.; Ward, S.; Hoegh-Guldberg, O. Inter- and Intra-Specific Variability in Ribosomal DNA Sequence in the Internal Transcribed Spacer Region of Corals. In Proceedings of the Australian Coral Reef Society 75th Anniversary Conference, Heron Island, Australia, 2–6 October 1997; pp. 241–248. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990; Volume 38, pp. 315–322. Available online: http://pdf.xuebalib.com:1262/3x0d5gC6z4eF.pdf (accessed on 7 October 2021).
Genes of Interest | Functional Profile | Forward and Reverse Primer Sequence |
---|---|---|
Heat shock protein 16 (Hsp16) | Prevents protein aggregation | F: 5′–GTATTGCGCTGCCAAAGGAC–3′ R: 5′–TAGTTGGCAGTTTCACCCGC–3′ |
Adenosine kinase (Adk) | Regulates metabolism and possibly growth | F: 5′–ACCAGCGATTGGGCAATACA–3′ R: 5′–GCAGAGATGTCCAGGAGTGG–3′ |
Green fluorescent-like protein (GFP) | Possibly photoprotective function | F: 5′–TTTGCATCGCCACAAACGAC–3′ R: 5′–CACATCGGTAATGGCCACCT–3′ |
NF-κB inhibitor (IκB) | Regulates apoptosis process | F: 5′–TCCGCAAACTCGTGTATCGT–3′ R: 5′–CCAGTCAAAAGCCTCCGAGT–3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, C.L.X.; Poquita-Du, R.C.; Huang, D.; Todd, P.A. Emersion-Associated Responses of an Intertidal Coral and Its Suitability for Transplantation to Ecologically Engineer Seawalls. J. Mar. Sci. Eng. 2021, 9, 1096. https://doi.org/10.3390/jmse9101096
Yong CLX, Poquita-Du RC, Huang D, Todd PA. Emersion-Associated Responses of an Intertidal Coral and Its Suitability for Transplantation to Ecologically Engineer Seawalls. Journal of Marine Science and Engineering. 2021; 9(10):1096. https://doi.org/10.3390/jmse9101096
Chicago/Turabian StyleYong, Clara Lei Xin, Rosa Celia Poquita-Du, Danwei Huang, and Peter Alan Todd. 2021. "Emersion-Associated Responses of an Intertidal Coral and Its Suitability for Transplantation to Ecologically Engineer Seawalls" Journal of Marine Science and Engineering 9, no. 10: 1096. https://doi.org/10.3390/jmse9101096