Comparative Life Cycle Assessment of Marine Insulation Materials
Abstract
:1. Introduction
1.1. Background
1.2. Current Issues in Marine Industry
1.3. Direction to Contribution
2. Methodology (Life Cycle Assessment)
3. Goal and Scope
3.1. System Boundary
3.2. Functional Unit
3.3. Assumptions
3.4. Impact Categories
4. Inventory Analysis
4.1. Case Ship and Material Analysis
4.2. Data Collection
4.3. Flow Diagram Modelling
5. Results (Impact Assessment)
5.1. Global Warming Potential (GWP)
5.2. Acidification Potential (AP)
5.3. Eutrophication Potential (EP)
5.4. Ozone Depletion Potential (ODP)
5.5. Human Toxicity Potential (HTP)
5.6. Material Suggestion
6. Discussion
7. Conclusions
- (1)
- Most environmental impacts were attributed to the manufacturing phase, indicating the importance of developing proper production processes of insulation materials to contribute to cleaner shipbuilding.
- (2)
- Although polyurethane foam showed the greatest impact among the three different materials, expanded polystyrene and wool-based insulation were considered as eco-friendly materials with relatively low environmental impact. To be brief, wool-based insulation has the lowest results in terms of GWP and HTP as 2.1 104 kg CO2-eq and 760.1 kg DCB-eq, respectively. Expanded polystyrene has the lowest impact with respect to GWP, AP, and EP as 2.1 104 kg CO2-eq, 23.3 kg SO2-eq, and 2.7 kg Phosphate-eq, respectively. In addition to the results regarding environmental performance, when the practicality is considered, since only 3300 kg of expanded polystyrene is needed to replace 15,000 kg of wool-based insulation material, the former is suggested due to its light weight. As a result of the substitution of wool-based material with expanded polystyrene, better efficiency is achieved when it comes to the distribution stage and construction stage. Therefore, expanded polystyrene should be used in the marine industry as both the environmental performance and weight were considered in the study.
- (3)
- As a proven methodology, this comparative LCA research will aid the marine industry to achieve sustainability by suggesting expanded polystyrene as a replacing material based on the results. By using the material as a marine insulation, environmental impacts regarding global warming, acidification, and eutrophication will be reduced. Since many sectors, including the marine industry, are struggling with curtailing various environmental issues, such as ecocide and climate change, this research is expected to provide a useful option, which can contribute to the current task.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weng, Y.; Hsu, K.-C.; Liu, B.J. Increasing worldwide environmental consciousness and environmental policy adjustment. Q. Rev. Econ. Financ. 2019, 71, 205–210. [Google Scholar] [CrossRef]
- Berardi, U.; GhaffarianHoseini, A.; GhaffarianHoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G.; Guerriero, L.; Trematerra, A. Use of cork sheets for room acoustic correction. J. Green Build. 2020, 15, 45–55. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Sun, Y.; Tingley, D.D.; Zhang, Y. Life cycle sustainability assessment of fly ash concrete structures. Renew. Sustain. Energy Rev. 2017, 80, 1162–1174. [Google Scholar] [CrossRef]
- Guinee, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life Cycle Assessment: Past, Present, and Future; ACS Publications: Wasington, DC, USA, 2011. [Google Scholar]
- Hwang, S.S.; Gil, S.J.; Lee, G.N.; Lee, J.W.; Park, H.; Jung, K.H.; Suh, S.B. Life Cycle Assessment of Alternative Ship Fuels for Coastal Ferry Operating in Republic of Korea. J. Mar. Sci. Eng. 2020, 8, 660. [Google Scholar] [CrossRef]
- Vita, A.; Castorani, V.; Germani, M.; Marconi, M. Comparative life cycle assessment of low-pressure RTM, compression RTM and high-pressure RTM manufacturing processes to produce CFRP car hoods. Procedia CIRP 2019, 80, 352–357. [Google Scholar] [CrossRef]
- Hwang, S.; Jeong, B.; Jung, K.; Kim, M.; Zhou, P. Life cycle assessment of lng fueled vessel in domestic services. J. Mar. Sci. Eng. 2019, 7, 359. [Google Scholar] [CrossRef] [Green Version]
- Joung, T.-H.; Kang, S.-G.; Lee, J.-K.; Ahn, J. The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- International Maritime Organization. Sulphur 2020—Cutting Sulphur Oxide Emissions; International Maritime Organization: London, UK, 2020. [Google Scholar]
- Jeong, B.; Jeon, H.; Kim, S.; Kim, J.; Zhou, P. Evaluation of the lifecycle environmental benefits of full battery powered ships: Comparative analysis of marine diesel and electricity. J. Mar. Sci. Eng. 2020, 8, 580. [Google Scholar] [CrossRef]
- Wang, H.; Oguz, E.; Jeong, B.; Zhou, P. Life cycle cost and environmental impact analysis of ship hull maintenance strategies for a short route hybrid ferry. Ocean Eng. 2018, 161, 20–28. [Google Scholar]
- Katsiropoulos, C.V.; Loukopoulos, A.; Pantelakis, S.G. Comparative Environmental and Cost Analysis of Alternative Production Scenarios Associated with a Helicopter’s Canopy. Aerospace 2019, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Gurieff, N.; Lant, P. Comparative life cycle assessment and financial analysis of mixed culture polyhydroxyalkanoate production. Bioresour. Technol. 2007, 98, 3393–3403. [Google Scholar] [CrossRef]
- Llantoy, N.; Chàfer, M.; Cabeza, L.F. A comparative Life Cycle Assessment (LCA) of different insulation materials for buildings in the continental Mediterranean climate. Energy Build. 2020, 225, 110323. [Google Scholar] [CrossRef]
- Li, Z.; Gong, X.Z.; Wang, Z.H.; Liu, Y.; Ma, L.P.; Wang, S.P.; Guo, J. Life cycle assessment of rock wool board and EPS board. In Materials Science Forum; Trans Tech Publications Ltd.: Kapellweg, Switzerland, 2014; pp. 106–110. [Google Scholar]
- Schmidt, A.C.; Jensen, A.A.; Clausen, A.U.; Kamstrup, O.; Postlethwaite, D. A comparative life cycle assessment of building insulation products made of stone wool, paper wool and flax. Int. J. Life Cycle Assess. 2004, 9, 53–66. [Google Scholar] [CrossRef]
- Shama, M. Life cycle assessment of ships. Marit. Transp. Exploit. Ocean Coast. Resour. 2005, 1, 1751–1758. [Google Scholar]
- Jeong, B.; Jang, H.; Zhou, P.; Lee, J.-U. Investigation on marine LNG propulsion systems for LNG carriers through an enhanced hybrid decision making model. J. Clean. Prod. 2019, 230, 98–115. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Menoufi, K.; Castell, A.; Navarro, L.; Pérez, G.; Boer, D.; Cabeza, L.F. Evaluation of the environmental impact of experimental cubicles using Life Cycle Assessment: A highlight on the manufacturing phase. Appl. Energy 2012, 92, 534–544. [Google Scholar]
- ISO Standardization. Environmental Management: Life Cycle Assessment; Principles and Framework; ISO: Geneva, Switzerland, 2006. [Google Scholar]
- Cao, C. Sustainability and Life Assessment of High Strength Natural Fibre Composites in Construction, Advanced High Strength Natural Fibre Composites in Construction; Elsevier: Amsterdam, The Netherlands, 2017; pp. 529–544. [Google Scholar]
- Muthu, S. Estimating the Overall Environmental Impact of Textile Processing: Life Cycle Assessment (LCA) of Textile Products. Assessing the Environmental Impact of Textiles and the Clothing Supply Chain; Elsevier: Amsterdam, The Netherlands, 2014; p. 105e131. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Gabathuler, H. LCA History: Centrum voor Milieukunde Leiden (CML) The CML Story How Environmental Sciences Entered the Debate on LCA Special Issue to Helias A. Udo de Haes. Int. J. Life Cycle Assess. 2006, 2, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M. Perovskite Photovoltaics: Life Cycle Assessment, Perovskite Photovoltaics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 447–480. [Google Scholar]
- Hernandez, P.; Oregi, X.; Longo, S.; Cellura, M. Life-Cycle Assessment of Buildings, Handbook of Energy Efficiency in Buildings; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–261. [Google Scholar]
- PE-International. GaBi Paper Clip Tutorial: Handbook for Life Cycle Assessment, Using the GaBi Software; PE International GmbH and Universität Stuttgart: Stuttgart, Germany, 2011. [Google Scholar]
- Vallero, D.A. Air Pollution Calculations: Quantifying Pollutant Formation, Transport, Transformation, Fate and Risks; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Tagliarolo, M. Acidification in Aquatic Systems. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 6. [Google Scholar]
- La Rosa, A. Life Cycle Assessment of Biopolymers, Biopolymers and Biotech Admixtures for Eco-Efficient Construction Materials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 57–78. [Google Scholar]
- Lemley, D.A.; Adams, J.B.; Rishworth, G.M.; Bouland, C. Phytoplankton responses to adaptive management interventions in eutrophic urban estuaries. Sci. Total Environ. 2019, 693, 133601. [Google Scholar]
- Dorgham, M.M. Effects of Eutrophication, Eutrophication: Causes, Consequences and Control; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–44. [Google Scholar]
- Poulopoulos, S. Atmospheric Environment, Environment and Development; Elsevier: Amsterdam, The Netherlands, 2016; pp. 45–136. [Google Scholar]
- Durante, S.; Comoglio, M.; Ridgway, N. Chapter 34-Life Cycle Assessment in Nanotechnology, Materials and Manufacturing A2-Qin, Yi. In Micromanufacturing Engineering and Technology; William Andrew Publishing: Boston, MA, USA, 2015. [Google Scholar]
- Singh, V.; Dincer, I.; Rosen, M.A. Life Cycle Assessment of Ammonia Production Methods, Exergetic, Energetic and Environmental Dimensions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 935–959. [Google Scholar]
- Spatari, S.; Betz, M.; Florin, H.; Baitz, M.; Faltenbacher, M. Using GaBi 3 to perform life cycle assessment and life cycle engineering. Int. J. Life Cycle Assess. 2001, 6, 81. [Google Scholar] [CrossRef]
- Environmental Product Declaration (Glass Mineral Wool 036-037-038 Unfaced Rolls Classic 037, Expert IPR 037, KI Fit 037, Naturoll 037, Decibel, TI 140T, TI 140W, Ultracoustic R, Unifit 037, TP 115 with ECOSE Technology), 13.07.2015 ed.; Institut Bauen und Umwelt e.V. (IBU): Berlin, Germany, 2015.
- Environmental Product Declaration (Expanded Polystyrene (EPS) Foam Insulation (Density 30 kg/m3)), 20.04.2017 ed.; Institut Bauen und Umwelt e.V. (IBU): Berlin, Germany, 2017.
- Environmental Product Declaration (Light and Heavy Density Mineral Wool Board), 07.11.2018 ed.; UL Environment, North American Insulation Manufacturers Association: Alexandria, VA, USA, 2018.
- Environmental Product Declaration (Polyurethane Thermal Insulation Spray Foam (Blowing Agent HFO; Density 40 kg/m3), 26.02.2019 ed.; Institut Bauen und Umwelt e.V. (IBU): Berlin, Germany, 2019.
- Kosareo, L.; Ries, R. Comparative environmental life cycle assessment of green roofs. Build. Environ. 2007, 42, 2606–2613. [Google Scholar] [CrossRef]
Deck | Height (m) | Width (m) | Length (m) |
---|---|---|---|
Upper | 3.90 | 21.60 | 23.02 |
A | 2.85 | 20.00 | 23.02 |
B | 2.85 | 10.66 | 23.02 |
C | 3.00 | 10.40 | 23.02 |
Navigation | 2.90 | 11.07 | 13.44 |
Deck | Total Volume (m3) | Volume of Wool-Based Material (m3) | Total Percentage of Wool-Based Material |
---|---|---|---|
Upper | 58.54 | 37.58 | 72.50% |
A | 39.34 | 27.37 | |
B | 32.78 | 23.65 | |
C | 43.21 | 32.96 | |
Navigation | 20.90 | 19.66 |
Material | Density (kg/m3) | Thickness (mm) | Total Weight (kg) |
---|---|---|---|
Mineral wool | 140 | 253,060 | 13,000 |
Glass wool | 45 | 30, 50 | 2000 |
EPS | 30 | 24 | 3300 |
PU | 60 | 22 | 6000 |
GWP (kg CO2-eq.) | AP (kg SO2-eq.) | EP (kg Phosphate-eq.) | ODP (kg R 11-eq.) | HTP (kg DCB-eq.) | |
---|---|---|---|---|---|
Wool-based | 2.0 104 | 117.4 | 16.0 | 1.9 10−10 | 741.0 |
EPS | 1.0 104 | 22.5 | 2.4 | 2.9 10−4 | 1.5 103 |
PU foam | 2.6 104 | 109.0 | 19.0 | 1.5 10−14 | 3.4 103 |
GWP (kg CO2-eq.) | AP (kg SO2-eq.) | EP (kg Phosphate-eq.) | ODP (kg R 11-eq.) | HTP (kg DCB-eq.) | |
---|---|---|---|---|---|
Wool-based | 1.0 103 | 3.5 | 0.9 | 7.0 10−10 | 19.1 |
EPS | 1.1 104 | 0.8 | 0.3 | 2.0 10−8 | 4.2 |
PU foam | 1.3 104 | 1.0 | 1.5 | 1.3 10−7 | 4.4 |
GWP (kg CO2-eq.) | AP (kg SO2-eq.) | EP (kg Phosphate-eq.) | ODP (kg R 11-eq.) | HTP (kg DCB-eq.) | |
---|---|---|---|---|---|
Wool-based | 2.1 104 | 120.9 | 16.9 | 8.9 10−10 | 760.1 |
EPS | 2.1 104 | 23.3 | 2.7 | 2.9 10−4 | 1.5 103 |
PU foam | 3.9 104 | 110.0 | 20.5 | 1.3 10−7 | 3.4 103 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.; Jang, Y.; Jeong, B.; Cho, N.-K. Comparative Life Cycle Assessment of Marine Insulation Materials. J. Mar. Sci. Eng. 2021, 9, 1099. https://doi.org/10.3390/jmse9101099
Jang H, Jang Y, Jeong B, Cho N-K. Comparative Life Cycle Assessment of Marine Insulation Materials. Journal of Marine Science and Engineering. 2021; 9(10):1099. https://doi.org/10.3390/jmse9101099
Chicago/Turabian StyleJang, Hayoung, Yoonwon Jang, Byongug Jeong, and Nak-Kyun Cho. 2021. "Comparative Life Cycle Assessment of Marine Insulation Materials" Journal of Marine Science and Engineering 9, no. 10: 1099. https://doi.org/10.3390/jmse9101099
APA StyleJang, H., Jang, Y., Jeong, B., & Cho, N.-K. (2021). Comparative Life Cycle Assessment of Marine Insulation Materials. Journal of Marine Science and Engineering, 9(10), 1099. https://doi.org/10.3390/jmse9101099