Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service
Abstract
:1. Introduction
2. The Black Sea MFC High-Level Architecture and Components
2.1. Physics
2.2. Biogeochemistry
- NUTR: phosphorus, nitrate;
- PFTC: chlorophyll and phytoplankton biomass;
- BIOL: dissolved oxygen (O2) concentrations and net primary production;
- CARB: pH, dissolved inorganic carbon (DIC), total alkalinity (TA);
- CO2F: surface partial CO2 pressure, surface CO2 flux;
- OPT: photosynthetically active radiation (PAR) and attenuation coefficient (Kd) (only BS-BIO NRT).
2.3. Waves
3. Evaluating the Quality of the BS Products in the Operational Framework and for Monitoring
3.1. Validation of BS-PHY Systems
3.2. Validation of BS-BIO Systems
Region | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
EAN | 0.012 | −0.012 | −0.011 | 0.19 | 0.15 | 0.014 |
7 | 8 | 9 | 10 | 11 | ||
EAN | 0.04 | 0.009 | 0.055 | 0.07 | −0.07 |
3.3. Validation of BS-WAV Systems
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Traon, P.Y.; Reppucci, A.; Alvarez Fanjul, E.; Aouf, L.; Behrens, A.; Belmonte, M.; Bentamy, A.; Bertino, L.; Brando, V.E.; Kreiner, M.B.; et al. From Observation to Information and Users: The Copernicus Marine Service Perspective. Front. Mar. Sci. 2019, 6, 234. [Google Scholar] [CrossRef] [Green Version]
- Pecci, L.; Fichaut, M.; Schaap, D. SeaDataNet, an enhanced ocean data infrastructure giving services to scientists and society. In Proceedings of the IOP Conference Series: Earth and Environmental Science 2020, 11th International Symposium on Digital Earth (ISDE 11), Florence, Italy, 24–27 September 2019; Volume 509. [Google Scholar] [CrossRef]
- Madec, G.; The NEMO Team. NEMO Ocean Engine; Note du Pole de Modelisation; Institute Pierre-Simon Laplace (IPSL): Paris, France, 2008; ISSN 1288-1619. [Google Scholar]
- Dobricic, S.; Pinardi, N. An oceanographic three-dimensional variational data assimilation scheme. Ocean. Model. 2008, 22, 89–105. [Google Scholar] [CrossRef]
- Storto, A.; Dobricic, S.; Masina, S.; Di Pietro, P. Assimilating along-track altimetric observations through local hydrostatic adjustment in a global ocean variational assimilation system. Mon. Weather Rev. 2010, 139, 738–754. [Google Scholar] [CrossRef] [Green Version]
- Ciliberti, S.A.; Peneva, E.L.; Jansen, E.; Martins, D.; Creti’, S.; Stefanizzi, L.; Lecci, R.; Palermo, F.; Daryabor, F.; Lima, L.; et al. Black Sea Analysis and Forecast (CMEMS BS-Currents, EAS3 System) (Version 1) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). 2020. Available online: https://www.cmcc.it/doi/black-sea-physics-analysis-and-forecast-cmems-bs-currents-eas3-system (accessed on 15 August 2021).
- Historical GEBCO Data Sets. Available online: https://www.gebco.net/data_and_products/historical_data_sets/#gebco_one (accessed on 11 October 2021).
- Pettenuzzo, D.; Large, W.G.; Pinardi, N. On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J. Geophys. Res. Ocean. 2010, 115, C06022. [Google Scholar] [CrossRef]
- Rosati, A.; Miyakoda, K. A general circulation model for upper ocean simulation. J. Phys. Ocean. 1988, 18, 1601–1626. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeor. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G. Improving the Global Precipitation Record: GPCP Version 2.1. Geophys. Res. Lett. 2009, 36, L17808. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, W.; Dumont, E.; Meybeck, M.; Heussner, S. River discharges of water and nutrients to the Mediterranean Sea: Major drivers for ecosystem changes during past and future decades? Prog. Oceanogr. 2009, 80, 199–217. [Google Scholar] [CrossRef]
- Simonov, A.I.; Altman, E.N. Hydrometeorology and Hydrochemistry of the Seas. Vol IV: The Black Sea. Issue 1: Hydrometeorological conditions. Hydrometeoizdat 1991. (In Russian) [Google Scholar]
- Lima, L.; Aydoğdu, A.; Escudier, R.; Masina, S.; Ciliberti, S.A.; Azevedo, D.; Peneva, E.L.; Causio, S.; Cipollone, A.; Clementi, E.; et al. Black Sea Physical Reanalysis (CMEMS BS-Currents) (Version 1) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). 2020. Available online: https://resources.marine.copernicus.eu/product-detail/BLKSEA_MULTIYEAR_PHY_007_004/INFORMATION (accessed on 15 August 2021).
- Weatherall, P.; Marks, K.M.; Jakobsson, M.; Schmitt, T.; Tani, S.; Arndt, J.E.; Rovere, M.; Chayes, D.; Ferrini, V.; Wigley, R. A new digital bathymetric model of the world’s ocean. Earth Space Sci. 2015, 2, 331–345. [Google Scholar] [CrossRef]
- Gürses, Ö. Dynamics of the Turkish Straits System. A Numerical Study with a Finite Element Ocean Model Based on an Unstructured Grid Approach. Ph.D. Thesis, Middle East Technical University, Mersin, Turkey, 2016. [Google Scholar]
- Aydoğdu, A.; Pinardi, N.; Özsoy, E.; Danabasoglu, G.; Gürses, Ö.; Karspeck, A. Circulation of the Turkish Straits System under interannual atmospheric forcing. Ocean Sci. 2008, 14, 999–1019. [Google Scholar] [CrossRef] [Green Version]
- Grégoire, M.; Vandenbulcke, L.; Capet, A. Black Sea Biogeochemical Analysis and Forecast (CMEMS Near-Real Time BLACKSEA Biogeochemistry) (Version 1) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). 2020. Available online: https://resources.marine.copernicus.eu/product-detail/BLKSEA_ANALYSIS_FORECAST_BIO_007_010/INFORMATION (accessed on 15 August 2021).
- Grégoire, M.; Vandenbulcke, L.; Capet, A. Black Sea Biogeochemical Reanalysis (CMEMS BS-Biogeochemistry) (Version 1) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). 2020. Available online: https://resources.marine.copernicus.eu/product-detail/BLKSEA_REANALYSIS_BIO_007_005/INFORMATION (accessed on 15 August 2021).
- Grégoire, M.; Raick, C.; Soetaert, K. Numerical modeling of the deep Black Sea ecosystem functioning during the late 80’s (eutrophication phase). Prog. Oceanogr. 2008, 76, 286–333. [Google Scholar] [CrossRef]
- Grégoire, M.; Soetaert, K. Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: A biogeochemical model of the whole water column coupling the oxic and anoxic parts. Ecol. Model. 2010, 221, 2287–2301. [Google Scholar] [CrossRef]
- Capet, A.; Meysman, F.J.R.; Akoumianaki, I.; Soetaert, K.; Grégoire, M. Integrating sediment biogeochemistry into 3D oceanic models: A study of benthic-pelagic coupling in the Black Sea. Ocean Model. 2016, 101, 83–100. [Google Scholar] [CrossRef]
- Soetaert, K.; Hofmann, A.; Middelburg, J.; Meysman, F.; Greenwood, J. The effect of biogeochemical processes on pH. Mar. Chem. 2007, 105, 30–51. [Google Scholar] [CrossRef]
- Soetaert, K.; Middelburg, J.; Herman, P.; Buis, K. On the coupling of benthic pelagic biogeochemical models. Earth-Sci. Rev. 2000, 51, 173–201. [Google Scholar] [CrossRef]
- Vandenbulcke, L.; Barth, A. A stochastic operational forecasting system of the Black Sea: Technique and validation. Ocean Model. 2015, 93, 7–21. [Google Scholar] [CrossRef]
- Kanakidou, M.; Duce, R.A.; Prospero, J.M.; Baker, A.R.; Benitez-Nelson, C.; Dentener, F.J.; Hunter, K.A.; Liss, P.S.; Mahowald, N.; Okin, G.S.; et al. Atmospheric fluxes of organic N and P to the global ocean. Glob. Biogeochem. Cycles 2016, 26, GB3026. [Google Scholar] [CrossRef]
- Stanev, E.V.; Staneva, J.V.; Roussenov, V.M. On the Black Sea water mass formation. Model sensitivity study to atmospheric forcing and parameterization of physical processes. J. Mar. Syst. 1997, 13, 245–272. [Google Scholar] [CrossRef]
- Stanev, E.V.; Beckers, J.M. Barotropic and baroclinic oscillations in strongly stratified ocean basins. Numerical study for the Black Sea. J. Mar. Syst. 1999, 19, 65–112. [Google Scholar] [CrossRef]
- Staneva, J.; Behrens, A.; Ricker, M.; Gayer, G. Black Sea Waves Analysis and Forecast (CMEMS BS-Waves) (Version 2) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). 2020. Available online: https://resources.marine.copernicus.eu/product-detail/BLKSEA_ANALYSISFORECAST_WAV_007_003/INFORMATION (accessed on 15 August 2021).
- Staneva, J.; Behrens, A.; Ricker, M.; Gayer, G. Black Sea Waves Reanalysis (CMEMS BS-Waves) (Version 2) [Data Set]. Copernicus Monitoring Environment Marine Service (CMEMS). 2020. Available online: https://www.cmcc.it/doi/black-sea-waves-reanalysis-cmems-blk-waves (accessed on 15 August 2021).
- The WAMDI Group. The WAM Model-A Third Generation Ocean Wave Prediction Model. J. Phys. Oceanogr. 1988, 18, 1775–1810. [Google Scholar] [CrossRef] [Green Version]
- Staneva, J.; Ricker, M.; Carrasco Alvarez, R.; Breivik, Ø.; Schrum, C. Effects of Wave-Induced Processes in a Coupled Wave-Ocean Model on Particle Transport Simulations. Water 2021, 13, 415. [Google Scholar] [CrossRef]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994; 532p. [Google Scholar]
- Gunther, H.; Hasselmann, S.; Janssen, P.A.E.M. The WAM Model Cycle 4.0. User Manual. Technical Report No. 4; Deutsches Klimarechenzentrum: Hamburg, Germany, 1992; 102p. [Google Scholar]
- Janssen, P.A.E.M. Progress in ocean wave forecasting. J. Comput. Phys. 2008, 227, 3572–3594. [Google Scholar] [CrossRef]
- Staneva, J.; Behrens, A.; Wahle, K. Wave modelling for the German Bight coastal-ocean predicting system. J. Phys. Conf. Ser. 2015, 633, 233–254. [Google Scholar] [CrossRef]
- Staneva, J.; Behrens, A.; Gayer, G. Predictability of large wave heights in the western Black Sea during the 2018 winter storms. J. Oper. Oceanogr. 2020, 13. [Google Scholar] [CrossRef]
- Hersbach, H.; Janssen, P.A.E.M. Improvement of the Short-Fetch Behavior in the Wave Ocean Model (WAM). J. Atmos. Ocean. Technol. 1999, 16, 884–892. [Google Scholar] [CrossRef]
- Bidlot, J.-R.; Janssen, P.; Abdalla, S. A Revised Formulation of Ocean Wave Dissipation and Its Model Impact; ECMWF Tech. Memo. 509; ECMWF: Reading, UK, 2007; 27p. [Google Scholar]
- Behrens, A. Development of an ensemble prediction system for ocean surface waves in a coastal area. Ocean Dyn. 2015, 63, 469–486. [Google Scholar] [CrossRef] [Green Version]
- Staneva, J.; Alari, V.; Breivik, Ø.; Bidlot, J.-R.; Mogensen, K. Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dyn. 2017, 67, 81–191. [Google Scholar] [CrossRef]
- Staneva, J.; Grayek, S.; Behrens, A.; Günther, H. GCOAST: Skill assessments of coupling wave and circulation models (NEMO-WAM). In Proceedings of the Journal of Physics: Conference Series, 9th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) 2020, Tinos Island, Greece, 7–10 September 2020; Volume 1730, p. 012071. [Google Scholar] [CrossRef]
- Lewis, H.W.; Castillo Sanchez, J.M.; Siddorn, J.; King, R.R.; Tonani, M.; Saulter, A.; Sykes, P.; Pequignet, A.-C.; Weedon, G.P.; Palmer, T.; et al. Can wave coupling improve operational regional ocean forecasts for the north-west European Shelf? Ocean Sci. 2019, 15, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Benetazzo, A.; Barbariol, F.; Pezzutto, P.; Staneva, J.; Behrens, A.; Davison, S.; Bergamasco, F.; Sclavo, M.; Cavaleri, L. Towards a unified framework for extreme sea waves from spectral models: Rationale and applications. Ocean Eng. 2021, 219, 108263. [Google Scholar] [CrossRef]
- Bruciaferri, D.; Tonani, M.; Lewis, H.W.; Siddorn, J.R.; Saulter, A.; Castillo Sanchez, J.M.; Valiente, N.G.; Conley, D.; Sykes, P.; Ascione, I.; et al. The impact of ocean-wave coupling on the upper ocean circulation during storm events. J. Geophys. Res. Ocean. 2021, 126, e2021JC017343. [Google Scholar] [CrossRef]
- Hernandez, F.; Blockley, E.; Brassington, G.B.; Davidson, F.; Divakaran, P.; Drevillon, M.; Ishizaki, S.; Garcia-Sotillo, M.; Hogan, P.J.; Lagemma, P.; et al. Recent progress in performance evaluations and near real-time assessment of operational ocean products. J. Oper. Oceanogr. 2015, 8, 221–238. [Google Scholar] [CrossRef]
- Lima, L.; Ciliberti, S.A.; Aydoğdu, A.; Masina, S.; Escudier, R.; Cipollone, A.; Azevedo, D.; Causio, S.; Peneva, E.; Lecci, R.; et al. Climate signals in the Black Sea from a multidecadal eddy-resolving reanalysis. Front. Mar. Sci. 2021. [Google Scholar] [CrossRef]
- Boyer, T.P.; Baranova, O.K.; Coleman, C.; Garcia, H.E.; Grodsky, A.; Locarnini, R.A.; Mishonov, A.V.; Paver, C.R.; Reagan, J.R.; Seidov, D.; et al. World Ocean Database 2018; NOAA Atlas NESDIS 87. Available online: https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf (accessed on 11 October 2021).
- Kopelevich, O.V.; Sheberstov, S.V.; Sahling, I.V.; Vazyulya, S.V.; Burenkov, V.I. Bio-optical characteristics of the Russian Seas from satellite ocean color data of 1998–2012. In Proceedings of the VII International Conference “Current Problems in Optics of Natural Waters (ONW 2013)”, St. Petersburg, Russia, 10–14 September 2013. [Google Scholar]
- Palazov, A.; Ciliberti, S.; Peneva, E.; Grégoire, M.; Staneva, J.; Lemieux-Dudon, B.; Masina, S.; Pinardi, N.; Vandenbulcke, L.; Behrens, A.; et al. Black Sea Observing System. Front. Mar. Sci. 2019, 6, 315. [Google Scholar] [CrossRef]
Type of Observation | Provider | Product ID (If Available) | BS-PHY | BS-BIO | BS-WAV |
---|---|---|---|---|---|
Temperature and salinity profiles (in situ) | CMEMS | INSITU_BS_NRT_OBSERVATIONS_013_034 | A, V (NRT) | V (NRT) | V (NRT) |
INSITU_GLO_TS_REP_OBSERVATIONS_013_001_B | A, V (MY) | V (MY) | A, V (MY) | ||
SeaDataNet | NA, see [2] | A (MY) | |||
Sea surface temperature (satellite) | CMEMS | SST_BS_SST_L4_NRT_OBSERVATIONS_010_006 | A (NRT) | ||
SST_BS_SST_L3S_NRT_OBSERVATIONS_010_013 | V (NRT) | ||||
SST_BS_SST_L4_REP_OBSERVATIONS_010_022 | A, V (MY) | ||||
Sea level anomaly (satellite) | CMEMS | SEALEV-EL_EUR_PHY_L3_NRT_ OBSERVATIONS_008_059 | A, V (MY) | ||
SEALEV-EL_BS_PHY_L4_REP_OBSERVATIONS_008_042 | A, V (MY) | ||||
Chlorophyll (satellite) | CMEMS | OCEANCOL-OUR_BS_CHL_L3_NRT_OBSERVATIONS_009_045 | A (NRT) | ||
OCEANCOL-OUR_BS_OPTICS_L3_NRT_OBSERVATIONS_009_04 | V (NRT) | ||||
OCEANCOL-OUR_BS_CHL_L3_REP_OBSERVATIONS_009_079 | V (MY) | ||||
Significant wave height (satellite) | CMEMS | WAVE_GLO_WAV_L3_SWH_NRT_OBSERVATIONS_014_001 | V (NRT), A, V (MY) |
2019 | 2020 | |||||
---|---|---|---|---|---|---|
Layer (m) | Bias | RMSD | N. Observations | Bias | RMSD | N. Observations |
5–10 | −0.13 | 1.11 | 1844 | −0.05 | 0.78 | 2541 |
10–20 | −0.04 | 1.87 | 3462 | −0.23 | 1.57 | 4217 |
20–30 | 0.05 | 1.62 | 3484 | −0.02 | 2.10 | 3925 |
30–50 | 0.04 | 0.91 | 6909 | 0.11 | 1.37 | 7367 |
50–75 | 0.01 | 0.3 | 8717 | −0.02 | 0.72 | 8955 |
75–100 | −0.02 | 0.17 | 8329 | −0.3 | 0.27 | 7647 |
100–200 | 0.04 | 0.09 | 20,965 | 0.00 | 0.10 | 15,698 |
200–500 | −0.02 | 0.04 | 39,114 | −0.03 | 0.05 | 29,148 |
500–1000 | −0.01 | 0.02 | 33,457 | −0.01 | 0.02 | 18,786 |
2019 | 2020 | |||||
---|---|---|---|---|---|---|
Layer (m) | Bias | RMSD | N. Observations | Bias | RMSD | N. Observations |
5–10 | −0.08 | 0.30 | 1844 | −0.06 | 0.32 | 2541 |
10–20 | −0.05 | 0.25 | 3462 | −0.07 | 0.25 | 4217 |
20–30 | 0.00 | 0.23 | 3484 | −0.04 | 0.22 | 3925 |
30–50 | 0.09 | 0.29 | 6909 | 0.05 | 0.25 | 7367 |
50–75 | 0.08 | 0.38 | 8717 | 0.14 | 0.38 | 8955 |
75–100 | 0.02 | 0.37 | 8329 | 0.04 | 0.40 | 7647 |
100–200 | −0.02 | 0.22 | 20,965 | 0.01 | 0.20 | 15,698 |
200–500 | 0.00 | 0.08 | 39,114 | 0.00 | 0.08 | 29,148 |
500–1000 | 0.00 | 0.02 | 33,457 | −0.01 | 0.03 | 18,786 |
Q1/2019 | Q2/2019 | Q3/2019 | Q4/2019 | Q1/2020 | Q2/2020 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Satellite | Bias | RMSD | Bias | RMSD | Bias | RMSD | Bias | RMSD | Bias | RMSD | Bias | RMSD |
Saral/Altika | −6.7 | 16.7 | −5.9 | 16.8 | −8.7 | 16.8 | −6.1 | 21.8 | −1.2 | 24.9 | −4.6 | 16.6 |
CryoSat-2 | −3.2 | 16.3 | −1.1 | 15.1 | −4.0 | 17.2 | 2.3 | 23.7 | 1.7 | 25.8 | 0.5 | 18.0 |
Jason-3 | −6.4 | 17.2 | −6.0 | 17.8 | −7.2 | 18.8 | −6.2 | 24.8 | −3.9 | 19.6 | −2.8 | 19.8 |
Sentinel-3A | −3.4 | 16.4 | −5.4 | 17.5 | −5.9 | 17.1 | −4.7 | 21.8 | −2.2 | 22.4 | −9.6 | 22.3 |
Sentinel-3B | −4.1 | 16.5 | −8.0 | 18.9 | −9.5 | 19.2 | −7.4 | 23.3 | −5.4 | 25.5 | −9.6 | 25.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciliberti, S.A.; Grégoire, M.; Staneva, J.; Palazov, A.; Coppini, G.; Lecci, R.; Peneva, E.; Matreata, M.; Marinova, V.; Masina, S.; et al. Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service. J. Mar. Sci. Eng. 2021, 9, 1146. https://doi.org/10.3390/jmse9101146
Ciliberti SA, Grégoire M, Staneva J, Palazov A, Coppini G, Lecci R, Peneva E, Matreata M, Marinova V, Masina S, et al. Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service. Journal of Marine Science and Engineering. 2021; 9(10):1146. https://doi.org/10.3390/jmse9101146
Chicago/Turabian StyleCiliberti, Stefania A., Marilaure Grégoire, Joanna Staneva, Atanas Palazov, Giovanni Coppini, Rita Lecci, Elisaveta Peneva, Marius Matreata, Veselka Marinova, Simona Masina, and et al. 2021. "Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service" Journal of Marine Science and Engineering 9, no. 10: 1146. https://doi.org/10.3390/jmse9101146
APA StyleCiliberti, S. A., Grégoire, M., Staneva, J., Palazov, A., Coppini, G., Lecci, R., Peneva, E., Matreata, M., Marinova, V., Masina, S., Pinardi, N., Jansen, E., Lima, L., Aydoğdu, A., Creti’, S., Stefanizzi, L., Azevedo, D., Causio, S., Vandenbulcke, L., ... Agostini, P. (2021). Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service. Journal of Marine Science and Engineering, 9(10), 1146. https://doi.org/10.3390/jmse9101146