An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation
Abstract
:1. Introduction
2. Background Material
2.1. Ensemble Kalman Filter
2.2. Traditional Covariance Localization
3. An Adaptive Localization Scheme
3.1. Localization Taper Function
3.2. The Threshold Value of the Localization Radius
3.3. Implementation
- Integrate all ensemble members forward to the assimilation time step;
- Estimate the sample covariance for the forecast ensemble members;
- Calculate the correlation coefficient with the background ensembles;
- Update the adaptive localization radius and transform the localization matrix;
- Update the analysis field with the observation data, operator and error information;
- Integrate the ensemble members forward to the next time step;
- Repeat steps 2–6 until the assimilation process is completed.
4. Results and Analysis
4.1. Preliminary Evaluation in Lorenz96 Model
4.2. Application in an Atmospheric Model
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Lewis, J.M.; Derber, J.C. The use of adjoint equations to solve a variational adjustment problem with advective constraints. Tellus A 1985, 37, 309–322. [Google Scholar] [CrossRef]
- Dimet, F.-X.L.; Talagrand, O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus A 1986, 38, 97–110. [Google Scholar] [CrossRef]
- Rabier, F.; Jarvinen, H.; Klinker, E. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc. 2000, 126, 1143–1170. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Buehner, M. Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc. 2005, 131, 1013–1043. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Mitchell, H.L. Data Assimilation Using an Ensemble Kalman Filter Technique. Mon. Weather Rev. 1998, 126, 796–811. [Google Scholar] [CrossRef]
- Hamill, T.M.; Whitaker, J.S.; Snyder, C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 2001, 129, 2776–2790. [Google Scholar] [CrossRef] [Green Version]
- Lorenc, A.C. The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Q. J. R. Meteorol. Soc. 2003, 129, 3183–3203. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Zhang, F. Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation. Mon. Weather Rev. 2016, 144, 4489–4532. [Google Scholar] [CrossRef]
- Petrie, R. Localization in the Ensemble Kalman Filter. Master’s Thesis, Atmosphere, Ocean and Climate University of Reading, London, UK, 2008. [Google Scholar]
- Bergemann, K.; Reich, S. A localization technique for ensemble Kalman filters. Q. J. R. Meteorol. Soc. 2010, 136, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zheng, F.; Li, X. A new localization implementation scheme for ensemble data assimilation of non-local observations. Tellus A 2011, 63, 244–255. [Google Scholar] [CrossRef]
- Farchi, A.; Bocquet, M. On the efficiency of covariance localisation of the ensemble Kalman filter using augmented ensembles. Front. Appl. Math. Stat. 2019, 5, 3–5. [Google Scholar] [CrossRef]
- Kirchgessner, P.; Nerger, L.; Bunse-Gerstner, A. On the choice of an optimal localization radius in ensemble Kalman filter methods. Mon. Weather Rev. 2014, 142, 2165–2175. [Google Scholar] [CrossRef] [Green Version]
- Flowerdew, J. Towards a theory of optimal localisation. Tellus A 2015, 67, 25257. [Google Scholar] [CrossRef]
- Devegowda, D.; Arroyo-Negrete, E.; Datta-Gupta, A. Flow relevant covariance localization during dynamic data assimilation using EnKF. Adv. Water Resour. 2010, 33, 129–145. [Google Scholar] [CrossRef]
- Perianez, A.; Reich, H.; Potthast, R. Optimal localization for ensemble Kalman filter systems. J. Meteorol. Soc. Jpn. Ser. II 2014, 92, 585–597. [Google Scholar]
- Wu, X.; Li, W.; Han, G.; Zhang, L.; Shao, C.; Sun, C.; Xuan, L. An adaptive compensatory approach of the fixed localization in the EnKF. Mon. Weather Rev. 2015, 143, 4714–4735. [Google Scholar] [CrossRef]
- Zhang, H.-Q.; Tian, X.-J.; Zhang, C.-M. An Economical Approach to Flow-Adaptive Moderation of Spurious Ensemble Correlations and Its Application in the Proper Orthogonal Decomposition-Based Ensemble Four Dimensional Variational Assimilation Method. Atmos. Ocean. Sci. Lett. 2015, 8, 320–325. [Google Scholar]
- Lei, L.; Anderson, J.L.; Whitaker, J.S. Localizing the impact of satellite radiance observations using a global group ensemble filter. J. Adv. Model. Earth Syst. 2016, 8, 719–734. [Google Scholar] [CrossRef] [Green Version]
- Popov, A.A.; Sandu, A. A Bayesian approach to multivariate adaptive localization in ensemble-based data assimilation with time-dependent extensions. Nonlinear Process. Geophys. 2019, 26, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L. Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Phys. D Nonlinear Phenom. 2007, 230, 99–111. [Google Scholar] [CrossRef]
- Anderson, J.L. Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation. Mon. Weather Rev. 2012, 140, 2359–2371. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L. Reducing correlation sampling error in ensemble Kalman filter data assimilation. Mon. Weather Rev. 2016, 144, 913–925. [Google Scholar] [CrossRef]
- Ying, Y.; Zhang, F.; Anderson, J.L. On the selection of localization radius in ensemble filtering for multiscale quasigeostrophic dynamics. Mon. Weather Rev. 2018, 146, 543–560. [Google Scholar] [CrossRef]
- Bishop, C.H.; Hodyss, D. Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Q. J. R. Meteorol. Soc. 2007, 133, 2029–2044. [Google Scholar] [CrossRef]
- Bishop, C.H.; Hodyss, D. Ensemble covariances adaptively localized with ECO-RAP. Part 1: Tests on simple error models. Tellus A 2009, 61, 84–96. [Google Scholar] [CrossRef]
- Bishop, C.H.; Hodyss, D. Ensemble covariances adaptively localized with ECO-RAP. Part 2: A strategy for the atmosphere. Tellus A 2009, 61, 97–111. [Google Scholar] [CrossRef]
- Ménétrier, B.; Montmerle, T.; Michel, Y.; Berre, L. Linear filtering of sample covariances for ensemble-based data assimilation. Part I: Optimality criteria and application to variance filtering and covariance localization. Mon. Weather Rev. 2015, 143, 1622–1643. [Google Scholar] [CrossRef]
- Luo, X.; Bhakta, T.; Naevdal, G. Correlation-based adaptive localization with applications to ensemble-based 4D-seismic history matching. SPE J. 2018, 23, 396–427. [Google Scholar] [CrossRef]
- Luo, X.; Lorentzen, R.J.; Valestrand, R.; Evensen, G. Correlation-based adaptive localization for ensemble-based history matching: Applied to the Norne field case study. SPE Reserv. Eval. Eng. 2019, 22, 1084–1109. [Google Scholar] [CrossRef]
- Luo, X.; Bhakta, T. Automatic and adaptive localization for ensemble-based history matching. J. Pet. Sci. Eng. 2020, 184, 106559. [Google Scholar] [CrossRef]
- Moosavi, A.; Attia, A.; Sandu, A. A machine learning approach to adaptive covariance localization. arXiv 2018, arXiv:1801.00548. [Google Scholar]
- Attia, A.; Constantinescu, E. An optimal experimental design framework for adaptive inflation and covariance localization for ensemble filters. arXiv 2018, arXiv:1806.10655. [Google Scholar]
- Moosavi, A.; Attia, A.; Sandu, A. Tuning Covariance Localization Using Machine Learning. Int. Conf. Comput. Sci. 2019, 3, 199–212. [Google Scholar]
- Lorenz, E.N. Predictability: A problem partly solved. Proc. Semin. Predict. 1996, 1, 1. [Google Scholar]
- Anderson, J.; Hoar, T.; Raeder, K.; Liu, H.; Collins, N.; Torn, R.; Avellano, A. The data assimilation research testbed: A community facility. Bull. Am. Meteorol. Soc. 2009, 90, 1283–1296. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR. Atmos. Res. 2008. [Google Scholar]
- Chen, Y.; Oliver, D.S. Localization and regularization for iterative ensemble smoothers. Comput. Geosci. 2017, 21, 13–30. [Google Scholar] [CrossRef]
- Oke, P.R.; Sakov, P.; Corney, S.P. Impacts of localisation in the EnKF and EnOI: Experiments with a small model. Ocean Dyn. 2007, 57, 32–45. [Google Scholar] [CrossRef]
- Ehrendorfer, M. A review of issues in ensemble-based Kalman filtering. Meteorol. Z. 2007, 3, 795–818. [Google Scholar] [CrossRef]
- Furrer, R.; Bengtsson, T. Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivar. Anal. 2007, 98, 227–255. [Google Scholar] [CrossRef] [Green Version]
- Gaspari, G.; Cohn, S.E. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 1999, 125, 723–757. [Google Scholar] [CrossRef]
- Chen, Y.; Oliver, D.S. Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci. 2010, 14, 579–601. [Google Scholar] [CrossRef]
- Janjic, T.; Nerger, L.; Albertella, A.; Schröter, J.; Skachko, S. On domain localization in ensemble-based Kalman filter algorithms. Mon. Weather Rev. 2011, 139, 2046–2060. [Google Scholar] [CrossRef] [Green Version]
- Horn, R. The hadamard product. Proc. Symp. Appl. Math. 1990, 40, 87–169. [Google Scholar]
- Houtekamer, P.L.; Mitchell, H.L. Ensemble kalman filtering. Q. J. R. Meteorol. Soc. 2005, 131, 3269–3289. [Google Scholar] [CrossRef]
- Ménétrier, B.; Montmerle, T.; Michel, Y.; Berre, L. Linear Filtering of Sample Covariances for Ensemble-Based Data Assimilation. Part II: Application to a Convective-Scale NWP Model. Mon. Weather Rev. 2015, 143, 1644–1664. [Google Scholar] [CrossRef]
- Sample Covariance Filtering. Available online: https://github.com/benjaminmenetrier/covariance_filtering/blob/master/covariance_filtering.pdf (accessed on 10 September 2020).[Green Version]
- Anderson, J.L. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 2001, 129, 2884–2903. [Google Scholar] [CrossRef]
- Kepert, J.D. Covariance localisation and balance in an ensemble Kalman filter. Q. J. R. Meteorol. Soc. 2009, 135, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
Notation | Description |
---|---|
N | The ensemble size |
Model state dimension | |
Observation dimension | |
Expectation | |
x | Model state variables |
y | Observational data |
r | Euclidean distance between two points |
c | Cut-off radius |
Steps of Assimilation Cycle | ... | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
---|---|---|---|---|---|---|---|---|---|---|---|
Adaptive Radius | ... | 6 | 6 | 12 | 7 | 11 | 6 | 13 | 19 | 15 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Liu, B.; Zhang, W.; Wu, J.; Cao, X.; Huang, Q. An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation. J. Mar. Sci. Eng. 2021, 9, 1156. https://doi.org/10.3390/jmse9111156
Xing X, Liu B, Zhang W, Wu J, Cao X, Huang Q. An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation. Journal of Marine Science and Engineering. 2021; 9(11):1156. https://doi.org/10.3390/jmse9111156
Chicago/Turabian StyleXing, Xiang, Bainian Liu, Weimin Zhang, Jianping Wu, Xiaoqun Cao, and Qunbo Huang. 2021. "An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation" Journal of Marine Science and Engineering 9, no. 11: 1156. https://doi.org/10.3390/jmse9111156
APA StyleXing, X., Liu, B., Zhang, W., Wu, J., Cao, X., & Huang, Q. (2021). An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation. Journal of Marine Science and Engineering, 9(11), 1156. https://doi.org/10.3390/jmse9111156