Near-Inertial Waves Induced by Typhoon Megi (2010) in the South China Sea
Abstract
:1. Introduction
2. Data and Methodology
2.1. Typhoon Megi
2.2. Data
2.3. Methodology
3. Comparison with In Situ Observations
4. Megi-Induced NIKE
4.1. Temporal Variation and Spatial Distribution
4.2. Damping
5. Modal Content
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alford, M.H.; MacKinnon, J.A.; Simmons, H.L.; Nash, J.D. Near-Inertial Internal Gravity Waves in the Ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123. [Google Scholar] [CrossRef] [Green Version]
- Garrett, C. Mixing with latitude. Nat. Cell Biol. 2003, 422, 477. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.; Fringer, O.; Zaron, E. Regional Models of Internal Tides. Oceanography 2012, 25, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Qiu, B.; Tian, J.; Zhao, W.; Huang, X. Latitude-dependent finescale turbulent shear generations in the Pacific trop-ical-extratropical upper ocean. Nat. Commun. 2018, 9, 4086. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Guo, Z.; Wang, S.; Chen, X.; Lv, X.; Song, J. Upper ocean shear in the northern South China Sea. J. Oceanogr. 2019, 75, 525–539. [Google Scholar] [CrossRef]
- Jing, Z.; Wu, L. Low-Frequency Modulation of Turbulent Diapycnal Mixing by Anticyclonic Eddies Inferred from the HOT Time Series. J. Phys. Oceanogr. 2013, 43, 824–835. [Google Scholar] [CrossRef]
- Whalen, C.B.; MacKinnon, J.A.; Talley, L.D. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci. 2018, 11, 842–847. [Google Scholar] [CrossRef]
- Alford, M.H. Internal Swell Generation: The Spatial Distribution of Energy Flux from the Wind to Mixed Layer Near-Inertial Motions. J. Phys. Oceanogr. 2001, 31, 2359–2368. [Google Scholar] [CrossRef]
- Alford, M.H. Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett. 2003, 30, 1424. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M.; Hibiya, T. Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett. 2002, 29, 64-1–64-3. [Google Scholar] [CrossRef]
- Furuichi, N.; Hibiya, T.; Niwa, Y. Model-predicted distribution of wind-induced internal wave energy in the world’s oceans. J. Geophys. Res. Oceans 2008, 113, C09034. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y.; Perrie, W. Estimating the energy flux from the wind to ocean inertial motions: The sensitivity to surface wind fields. Geophys. Res. Lett. 2005, 32, 291–310. [Google Scholar] [CrossRef]
- Rimac, A.; Storch, J.; Eden, C.; Haak, H. The influence of high-resolution wind stress field on the power input to near-inertial motions in the ocean. Geophys. Res. Lett. 2013, 40, 4882–4886. [Google Scholar] [CrossRef]
- Simmons, H.; Alford, M. Simulating the Long-Range Swell of Internal Waves Generated by Ocean Storms. Oceanography 2012, 25, 30–41. [Google Scholar] [CrossRef]
- Munk, W.; Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep. Sea Res. Part I Oceanogr. Res. Pap. 1998, 45, 1977–2010. [Google Scholar] [CrossRef]
- Egbert, G.D.; Ray, R.D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nat. Cell Biol. 2000, 405, 775–778. [Google Scholar] [CrossRef]
- Alford, M.H.; MacKinnon, J.A.; Zhao, Z.; Pinkel, R.; Klymak, J.; Peacock, T. Internal waves across the Pacific. Geophys. Res. Lett. 2007, 34, 24601. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.-H.; Shang, X.-D.; Chen, G.-Y.; Sun, L. Variations of diurnal and inertial spectral peaks near the bi-diurnal critical latitude. Geophys. Res. Lett. 2009, 36, 02606. [Google Scholar] [CrossRef]
- MacKinnon, J.A.; Alford, M.H.; Sun, O.; Pinkel, R.; Zhao, Z.; Klymak, J. Parametric Subharmonic Instability of the Internal Tide at 29° N. J. Phys. Oceanogr. 2013, 43, 17–28. [Google Scholar] [CrossRef]
- Nikurashin, M.; Legg, S. A Mechanism for Local Dissipation of Internal Tides Generated at Rough Topography. J. Phys. Oceanogr. 2011, 41, 378–395. [Google Scholar] [CrossRef]
- Liang, X.; Wunsch, C. Note on the redistribution and dissipation of tidal energy over mid-ocean ridges. Tellus A Dyn. Meteorol. Oceanogr. 2015, 67, 27385. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cao, A.; Chen, X.; Li, Q.; Song, J. On the resonant triad interaction over mid-ocean ridges. Ocean. Model. 2021, 158, 101734. [Google Scholar] [CrossRef]
- Nikurashin, M.; Ferrari, R. Radiation and dissipation of internal waves generated by geostrophic gotions impinging on small-scale topography: Theory. J. PhysOceanogr. 2010, 40, 2025–2042. [Google Scholar]
- Alford, M.H.; Shcherbina, A.Y.; Gregg, M.C. Observations of Near-Inertial Internal Gravity Waves Radiating from a Frontal Jet. J. Phys. Oceanogr. 2013, 43, 1225–1239. [Google Scholar] [CrossRef]
- Liang, X.; Thurnherr, A.M. Eddy-Modulated Internal Waves and Mixing on a Midocean Ridge. J. Phys. Oceanogr. 2012, 42, 1242–1248. [Google Scholar] [CrossRef]
- D’Asaro, E.; Black, P.; Centurioni, L.; Harr, P.; Jayne, S.; Lin, I.; Lee, C.; Morzel, J.; Mrvaljevic, R.; Niiler, P.; et al. Typhoon-Ocean Interaction in the Western North Pacific: Part 1. Oceanography 2011, 24, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, C.H.; Owen, J.S.; Franke, J.; Neves, L.C.; Hargreaves, D.M. Typhoon track simulations in the North West Pacific: Informing a new wind map for Vietnam. J. Wind. Eng. Ind. Aerodyn. 2021, 208, 104441. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Lizhen, W.; Jiachun, L. Estimation of extreme wind speed in SCS and NWP by a non-stationary model. Theor. Appl. Mech. Lett. 2016, 6, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Xu, J.; Liu, J.; He, Y.; Chen, Z.; Cai, S. Correlation of Near-Inertial Wind Stress in Typhoon and Typhoon-Induced Oceanic Near-Inertial Kinetic Energy in the Upper South China Sea. Atmosphere 2019, 10, 388. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Hu, J.; Zheng, Q.; Li, C. Strong near-inertial oscillations in geostrophic shear in the northern South China Sea. J. Oceanogr. 2011, 67, 377–384. [Google Scholar] [CrossRef]
- Chen, G.; Xue, H.; Wang, D.; Xie, Q. Observed near-inertial kinetic energy in the northwestern South China Sea. J. Geophys. Res. Oceans 2013, 118, 4965–4977. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Zhao, W.; Huthnance, J.; Tian, J.; Wang, J. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Oceans 2014, 119, 3134–3157. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Hou, Y. Near-inertial waves in the wake of 2011 Typhoon Nesat in the northern South China Sea. Acta Oceanol. Sin. 2014, 33, 102–111. [Google Scholar] [CrossRef]
- Yang, B.; Hou, Y.; Hu, P.; Liu, Z.; Liu, Y. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. J. Geophys. Res. Oceans 2015, 120, 3817–3836. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.; Zhou, L.; Liu, X.; Ding, T.; Zhou, B. Upper ocean response to typhoon Kalmaegi (2014). J. Geophys. Res. Oceans 2016, 121, 6520–6535. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, R.; Chen, D.; Liu, X.; He, H.; Tang, Y.; Ke, D.; Shen, Z.; Li, J.; Xie, J.; et al. Net Modulation of Upper Ocean Thermal Structure by Typhoon Kalmaegi (2014). J. Geophys. Res. Oceans 2018, 123, 7154–7171. [Google Scholar] [CrossRef]
- Cao, A.; Guo, Z.; Song, J.; Lv, X.; He, H.; Fan, W. Near-Inertial Waves and Their Underlying Mechanisms Based on the South China Sea Internal Wave Experiment (2010–2011). J. Geophys. Res. Oceans 2018, 123, 5026–5040. [Google Scholar] [CrossRef]
- Ding, W.; Liang, C.; Liao, G.; Li, J.; Lin, F.; Jin, W.; Zhu, L. Propagation characteristics of near-inertial waves along the conti-nental shelf in the wake of the 2008 Typhoon Hagupit in the northern South China Sea. B. Mar. Sci. 2018, 94, 1293–1311. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Qi, Y.; Jing, Z. Upper ocean near-inertial response to the passage of two sequential typhoons in the north-western South China Sea. Sci. China Earth Sci. 2019, 62, 863–871. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Y.; Chen, Z.; Liu, J.; Liu, T.; Li, J.; Cai, S.; Ning, D. Horizontal variations of typhoon-forced near-inertial oscillations in the south China sea simulated by a numerical model. Cont. Shelf Res. 2019, 180, 24–34. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Mercier, M.J.; Garnier, N.B.; Dauxois, T. Reflexion and Diffraction of Internal Waves analyzed with the Hilbert Transform. Phys. Fluids 2008, 20, 086601. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cao, A.; Chen, X.; Li, Q.; Song, J.; Meng, J. Estimation of the Reflection of Internal Tides on a Slope. J. Ocean. Univ. China 2020, 19, 489–496. [Google Scholar] [CrossRef]
- Nash, J.D.; Alford, M.H.; Kunze, E. Estimating Internal Wave Energy Fluxes in the Ocean. J. Atmos. Ocean. Technol. 2005, 22, 1551–1570. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Alford, M.H.; Mackinnon, J.A.; Pinkel, R. Long-Range Propagation of the Semidiurnal Internal Tide from the Ha-waiian Ridge. J. Phys. Oceanogr. 2010, 40, 713–736. [Google Scholar] [CrossRef] [Green Version]
- Cao, A.-Z.; Li, B.-T.; Lv, X.-Q. Extraction of Internal Tidal Currents and Reconstruction of Full-Depth Tidal Currents from Mooring Observations. J. Atmos. Ocean. Technol. 2015, 32, 1414–1424. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Q.; Xie, X.; Chen, G.; Chen, R. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2015, 98, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Alford, M.H.; Lien, R.-C.; Gregg, M.C.; Carter, G.S. Internal Tides and Mixing in a Submarine Canyon with Time-Varying Stratification. J. Phys. Oceanogr. 2012, 42, 2121–2142. [Google Scholar] [CrossRef]
- D’Asaro, E.A.; Eriksen, C.C.; Levine, M.D.; Niiler, P.; Paulson, C.A.; Meurs, P.V. Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr. 1995, 25, 2909–2936. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.E. On the Behavior of Internal Waves in the Wakes of Storms. J. Phys. Oceanogr. 1984, 14, 1129–1151. [Google Scholar] [CrossRef] [Green Version]
- Sun, O.M.; Pinkel, R. Energy Transfer from High-Shear, Low-Frequency Internal Waves to High-Frequency Waves near Kaena Ridge, Hawaii. J. Phys. Oceanogr. 2012, 42, 1524–1547. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Cao, A.; Lv, X.; Song, J. Impact of multiple tidal forcing on the simulation of the M2 internal tides in the northern South China Sea. Ocean.Dyn. 2019, 70, 187–198. [Google Scholar] [CrossRef]
- Price, J.F.; Sanford, T.B.; Forristall, G.Z. Forced Stage Response to a Moving Hurricane. J. Phys. Oceanogr. 1994, 24, 233–260. [Google Scholar] [CrossRef]
- Cacchione, D.A.; Pratson, L.F.; Ogston, A.S. The shaping of continental slopes by internal tides. Science 2020, 296, 724–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Cao, A.; Lv, X.; Song, J. Impacts of Stratification Variation on the M2 Internal Tide Generation in Luzon Strait. Atmos. Ocean. 2020, 58, 206–218. [Google Scholar] [CrossRef]
- Wu, L.; Miao, C.; Zhao, W. Patterns of K1 and M2 internal tides and their seasonal variations in the northern South China Sea. J. Oceanogr. 2013, 69, 481–494. [Google Scholar] [CrossRef]
- Hu, S.; Liu, L.; Guan, C.; Zhang, L.; Hu, D. Dynamic features of near-inertial oscillations in the Northwest Pacific derived from mooring observations from 2015 to 2018. J. Oceanol. Limn. 2020, 38, 1092–1107. [Google Scholar] [CrossRef]
- Dunphy, M.; Lamb, K.G. Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res. Oceans 2014, 119, 523–536. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, A.; Guo, Z.; Pan, Y.; Song, J.; He, H.; Li, P. Near-Inertial Waves Induced by Typhoon Megi (2010) in the South China Sea. J. Mar. Sci. Eng. 2021, 9, 440. https://doi.org/10.3390/jmse9040440
Cao A, Guo Z, Pan Y, Song J, He H, Li P. Near-Inertial Waves Induced by Typhoon Megi (2010) in the South China Sea. Journal of Marine Science and Engineering. 2021; 9(4):440. https://doi.org/10.3390/jmse9040440
Chicago/Turabian StyleCao, Anzhou, Zheng Guo, Yunhe Pan, Jinbao Song, Hailun He, and Peiliang Li. 2021. "Near-Inertial Waves Induced by Typhoon Megi (2010) in the South China Sea" Journal of Marine Science and Engineering 9, no. 4: 440. https://doi.org/10.3390/jmse9040440
APA StyleCao, A., Guo, Z., Pan, Y., Song, J., He, H., & Li, P. (2021). Near-Inertial Waves Induced by Typhoon Megi (2010) in the South China Sea. Journal of Marine Science and Engineering, 9(4), 440. https://doi.org/10.3390/jmse9040440