Multi-Objective Multidisciplinary Design Optimization of a Robotic Fish System
Abstract
:1. Introduction
2. Discipline Analysis
2.1. Hydrodynamics Discipline
2.1.1. Hydrodynamics Analysis Model
2.1.2. Parametric Modeling of the Hull Shape
2.1.3. Mesh Generation
2.1.4. CFD Numerical Simulation
2.1.5. CFD Grid Convergence Study
2.1.6. Surrogate Model for Hydrodynamics Analysis
- Design of experiment (DOE) can be applied to obtain sufficient input–output sample points for the construction of the surrogate model [5]. In this work, an optimal Latin hypercube design is adopted as the DOE method, and 200 sample points are collected.
- In this step, BPNN is employed as the surrogate model, and 70% of the sample points are selected randomly to train the surrogate model, and the number of hidden layer neurons is set to 20 in the BPNN model.
- In this step, 15% of the sample points are employed to validate the BPNN model, and 15% of the sample points are used to test the BPNN model.
- If the surrogate model meets the accuracy requirement, the BPNN model is exported to the hydrodynamics discipline model, or return to step 2 to retrain the BPNN model.
2.2. Weight and Equilibrium Discipline
2.3. Propulsion Discipline
2.3.1. Determination of Coordinate Frames
2.3.2. Kinematic Analysis
2.3.3. Dynamic Analysis
2.4. Energy Discipline
2.5. MMDO Model of the Robotic Fish
3. Multidisciplinary Design Optimization
3.1. Individual Discipline Feasible Approach
3.2. IDF Architecture of the MMDO Problem
4. Multi-Objective Optimization Algorithm
4.1. Grid Mechanism
4.2. Equilibrium Optimizer
4.2.1. Equilibrium Pool
4.2.2. Exponential Term
4.2.3. Generation Rate
4.3. Layered Disruption Method
4.4. Constraint Handling
- 1.
- Solution i is feasible and solution j is non-feasible.
- 2
- Both solution i and solution j are non-feasible, and the constraint violation of solution i is smaller than that of solution j.
- 3.
- Both solution i and solution j are feasible, but solution i dominates solution j.
4.5. Pseudo Code of DMOEOA
4.6. Parameter Setting
5. Optimization Results and Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, W. An overview of submersible research and development in China. J. Mar. Sci. Appl. 2018, 17, 459–470. [Google Scholar] [CrossRef]
- Roper, D.T.; Sharma, S.; Sutton, R.; Culverhouse, P. A review of developments towards biologically inspired propulsion systems for autonomous underwater vehicles. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 77–96. [Google Scholar] [CrossRef]
- Yu, J.; Wang, M.; Dong, H.; Zhang, Y.; Wu, Z. Motion control and motion coordination of bionic robotic fish: A review. J. Bionic Eng. 2018, 15, 579–598. [Google Scholar] [CrossRef]
- Raj, A.; Thakur, A. Fish-inspired robots: Design, sensing, actuation, and autonomy—A review of research. Bioinspir. Biomimetics 2016, 11, 031001. [Google Scholar] [CrossRef]
- Pan, B.; Cui, W. Multidisciplinary Design Optimization and Its Application in Deep Manned Submersible Design, 1st ed.; Springer: Singapore, 2020; pp. 17–87. [Google Scholar]
- Chen, H. Multidisciplinary Design Optimization (MDO). In Encyclopedia of Ocean Engineering; Cui, W., Fu, S., Eds.; Springer: Singapore, 2020; pp. 1–7. [Google Scholar]
- Cramer, E.J.; Dennis, J.E., Jr.; Frank, P.D.; Lewis, R.M.; Shubin, G.R. Problem formulation for multidisciplinary optimization. SIAM J. Optim. 1994, 4, 754–776. [Google Scholar] [CrossRef]
- Kroo, I.; Altus, S.; Braun, R.; Gage, P.; Sobieski, I. Multidisciplinary optimization methods for aircraft preliminary design. In Proceedings of the 5th Symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, FL, USA, 7–9 September 1994. [Google Scholar]
- Bloebaum, C.L.; Hajela, P.; Sobieszczanski-Sobieski, J. Non-hierarchic system decomposition in structural optimization. Eng. Optim. 1992, 19, 171–186. [Google Scholar] [CrossRef]
- Sobieszczanski-Sobieski, J.; Agte, J.S.; Sandusky, R.R., Jr. Bilevel integrated system synthesi. AIAA J. 2000, 38, 164–172. [Google Scholar] [CrossRef]
- Luo, W.; Lyu, W. An application of multidisciplinary design optimization to the hydrodynamic performances of underwater robots. Ocean Eng. 2015, 104, 686–697. [Google Scholar] [CrossRef]
- Chen, X.; Wang, P.; Zhang, D.; Dong, H. Gradient-based multidisciplinary design optimization of an autonomous underwater vehicle. Appl. Ocean Res. 2018, 80, 101–111. [Google Scholar] [CrossRef]
- Bidoki, M.; Mortazavi, M.; Sabzehparvar, M. A new approach in system and tactic design optimization of an autonomous underwater vehicle by using Multidisciplinary Design Optimization. Ocean Eng. 2018, 147, 517–530. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, H.; Wang, J.; Liu, Z.; Xin, J.; Pang, Y. Optimum design of a small intelligent ocean exploration underwater vehicle. Ocean Eng. 2019, 184, 40–58. [Google Scholar] [CrossRef]
- Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd ed.; Springer: New York, NY, USA, 2007; pp. 79–104. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J. PESA-II: Region-based selection in evolutionary multiobjective optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, San Francisco, CA, USA, 7–11 July 2001. [Google Scholar]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Mirjalili, S.; Saremi, S.; Mirjalili, S.M.; Coelho, L.D.S. Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst. Appl. 2016, 47, 106–119. [Google Scholar] [CrossRef]
- Wang, W.L.; Li, W.K.; Wang, Z.; Li, L. Opposition-based multi-objective whale optimization algorithm with global grid ranking. Neurocomputing 2019, 341, 41–59. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, S.; Li, C. A multi-objective hyper-heuristic algorithm based on adaptive epsilon-greedy selection. Complex Intell. Syst. 2021, 7, 765–780. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Cui, W. Disruption-Based Multiobjective Equilibrium Optimization Algorithm. Comput. Intell. Neurosci. 2020, 2020, 8846250. [Google Scholar] [CrossRef]
- Wang, P.; Song, B.; Wang, Y.; Zhang, L. Application of concurrent subspace design to shape design of autonomous underwater vehicle. In Proceedings of the Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, Qingdao, China, 30 July–1 August 2007. [Google Scholar]
- Liu, X.; Yuan, Q.; Zhao, M.; Cui, W.; Ge, T. Multiple objective multidisciplinary design optimization of heavier-than-water underwater vehicle using CFD and approximation model. J. Mar. Sci. Technol. 2017, 22, 135–148. [Google Scholar] [CrossRef]
- Yi, S.I.; Shin, J.K.; Park, G.J. Comparison of MDO methods with mathematical examples. Struct. Multidiscip. Optim. 2008, 35, 391–402. [Google Scholar] [CrossRef]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. In Proceedings of the International 1989 Joint Conference on Neural Networks, Washington, DC, USA, 18–22 June 1989. [Google Scholar]
- Granville, P.S. Geometrical Characteristics of Streamlined Shapes; Technical Report; David W. Taylor Naval Ship Research and Development Center, Defense Technical Information Center: Fort Belvoir, VA, USA, 1969. [Google Scholar]
- Zhou, C.; Tan, M.; Cao, Z.; Wang, S.; Creighton, D.; Gu, N.; Nahavandi, S. Kinematic modeling of a bio-inspired robotic fish. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar]
- Xia, D.; Liu, J.; Han, L. Dynamic Modeling of a Fishlike Robot with Undulatory Motion Based on Kane’s Method. J. Mech. Eng. 2009, 6, 41–49. [Google Scholar] [CrossRef]
- Wang, M.; Dong, H.; Li, X.; Zhang, Y.; Yu, J. Control and optimization of a bionic robotic fish through a combination of CPG model and PSO. Neurocomputing 2019, 337, 144–152. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, J.; Tan, M. CPG parameter search for a biomimetic robotic fish based on particle swarm optimization. In Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics, Guangzhou, China, 11–14 December 2012. [Google Scholar]
- Martins, J.R.; Lambe, A.B. Multidisciplinary design optimization: A survey of architectures. AIAA J. 2013, 51, 2049–2075. [Google Scholar] [CrossRef] [Green Version]
- Lambe, A.B.; Martins, J.R. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Struct. Multidiscip. Optim. 2012, 46, 273–284. [Google Scholar] [CrossRef]
- Yang, S.; Li, M.; Liu, X.; Zheng, J. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2013, 17, 721–736. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium optimizer: A novel optimization algorithm. Knowl. Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Harwit, M. Dynamics and masses of astronomical bodies. In Astrophysical Concepts; Harwit, M., Ed.; Springer: New York, NY, USA, 2006; pp. 67–104. [Google Scholar]
Shape Parameter | Value |
---|---|
20 (cm) | |
27 (cm) | |
6 (cm) | |
0.2 (cm) | |
R | 5 (cm) |
2 | |
1 | |
3 | |
12 |
Input Variable | Output Variable |
---|---|
(24 cm 30 cm) | |
Number of Mesh | |
---|---|
942,208 | 12.95503 |
1,492,608 | 13.01365 |
2,090,538 | 13.03643 |
Evaluation Index | Value |
---|---|
MSE for training set | 0.0094 |
MSE for validation set | 0.0247 |
MSE for test set | 0.0234 |
Input Variable | Output Variable |
---|---|
(10 cm 12 cm) | |
(10 cm 12 cm) | |
(4 cm 8 cm) | |
Input Variable | Output Variable |
---|---|
v | |
(10 cm 12 cm) | |
(10 cm 12 cm) | |
(4 cm 8 cm) |
Input Variable | Output Variable |
---|---|
(10 cm 12 cm) | |
(10 cm 12 cm) | |
(4 cm 8 cm) |
Variable and Constraint | Notation in IDF Architecture |
---|---|
v | |
c |
Parameter | Value |
---|---|
10 | |
2 | |
1 | |
0.5 | |
300 | |
30 | |
50 |
Initial Design | Case1 | Case2 | Case3 | Case4 | |
---|---|---|---|---|---|
12 | 10 | 10.007 | 10.77 | 10.055 | |
11 | 10 | 10.005 | 10 | 10.021 | |
4 | 4 | 4.01 | 4 | 4.04 | |
5.589 | 6.283 | 5.679 | 4.955 | 4.773 | |
5.1 | 4.28 | 4.003 | 3.142 | 3.142 | |
3.142 | 3.142 | 3.494 | 3.142 | 3.178 | |
0.533 | 0.524 | 0.849 | 0.743 | 0.695 | |
0.524 | 0.524 | 0.524 | 0.524 | 0.534 | |
1.047 | 1.032 | 1.046 | 1.047 | 1.042 | |
0.524 | 0.751 | 0.769 | 0.579 | 0.64 | |
2 | 2 | 2 | 2.078 | 2.313 | |
1 | 1.901 | 2.593 | 0.0213 | 0 | |
3 | 3.446 | 2.929 | 3.273 | 3.574 | |
12 | 16.326 | 14.405 | 14.105 | 14.71 | |
(N) | 12.858 | 11.941 | 12.499 | 12.462 | 12.577 |
v (m/s) | 0.104 | 0.2 | 0.4117 | 0.2827 | 0.2148 |
(h) | 10.792 | 11.779 | 6.345 | 11.443 | 15.516 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, W.; Cui, W.; Yang, P.; Chen, L. Multi-Objective Multidisciplinary Design Optimization of a Robotic Fish System. J. Mar. Sci. Eng. 2021, 9, 478. https://doi.org/10.3390/jmse9050478
Chen H, Li W, Cui W, Yang P, Chen L. Multi-Objective Multidisciplinary Design Optimization of a Robotic Fish System. Journal of Marine Science and Engineering. 2021; 9(5):478. https://doi.org/10.3390/jmse9050478
Chicago/Turabian StyleChen, Hao, Weikun Li, Weicheng Cui, Ping Yang, and Linke Chen. 2021. "Multi-Objective Multidisciplinary Design Optimization of a Robotic Fish System" Journal of Marine Science and Engineering 9, no. 5: 478. https://doi.org/10.3390/jmse9050478
APA StyleChen, H., Li, W., Cui, W., Yang, P., & Chen, L. (2021). Multi-Objective Multidisciplinary Design Optimization of a Robotic Fish System. Journal of Marine Science and Engineering, 9(5), 478. https://doi.org/10.3390/jmse9050478