An Interactive WebGIS Framework for Coastal Erosion Risk Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Puglia
2.1.2. Emilia-Romagna
2.2. WebGIS Design Procedures
2.2.1. WebGIS Requirment Analysis
2.2.2. WebGIS Prototype Design and Implementation
- (1)
- Architecture creation, based on the definition of the software used and the platforms required:
- (2)
- Data collection: the database included raster as well as vector data, point clouds and textured meshes. The geo-database comprised of all the data produced within STIMARE project and available on open portals. The former was locally available while the latter were integrated through external web services, as following described.
- (3)
- User interface building characterized both by 2D and 3D viewers and aimed at being:
- simplified and user friendly to be easily understandable by unskilled users as well;
- clear in content and attractive.
- (4)
- 2D viewer implementation (HTML, JS scripts, OpenLayers [55]).
- (5)
- 3D viewer implementation (HTML, JS scripts, CESIUM Ion Web interface [56]).
- (1)
- user interface (the presentation tier), where data are visualized;
- (2)
- processing module (the application tier), where data are handled; and
- (3)
- database (the data tier), where data are stored and managed.
- Web browsers as, for instance, Firefox, Chrome, Edge, aimed at accessing the information on the World Wide Web (documents, web pages, etc.);
- HTTP Apache Tomcat Server (version 9.0.39) [49], designed by Apache Software Foundation (Forest Hill, MD, USA), intended to run web applications developed in Java programming language [21,57]. The open nature of this project allows everyone to access codes and adapt them to any need. The web application is based on the Model-View-Controller design, through the framework Spring (for the model) and Apache Tapestry (for View and Controller) [58];
- PostGre Structured Query Language (PostGreSQL) database system (version 12.0) (PostgreSQL Global Development Group [50]), an open DataBase Management System (DBMS). It is a complete system that can process both geometric and topological features, and particularly, can efficiently create, handle and query databases using all types of Structured Query Language (SQL) statements. Moreover, it is equipped with a specific spatial extension (PostGIS) for uploading vector data (points, polylines, polygons and collections of geometries) and geo-referenced rasters within the geo-database. It also supports both geometric and spatial functions, such as calculation of areas, distances and processing commands (union, difference, buffer, intersection, content, overlap, etc.) [51]. PostGreSQL provides all OGC standards specific data types;
- Map server Geoserver (version 2.15.1) (Boundless Spatial, GeoSolutions, Refractions Research, St. Louis, MO, USA [52]), an Open-Source server in Java language responsible for processing and sharing all kinds of data. It was selected because it is fast and versatile. Designed to ensure interoperability, it can handle and publish data belonging to any spatial data source in an open standard format. Nevertheless, although it was mainly created to handle the 2D visualization of geospatial data, it also allows a 3D representation through Cesium JS [56]. Furthermore, it allows loading of external web services provided by the OGC standard protocol [58]:
- Web Map Service (WMS), which returns raster data;
- Web Feature Service (WFS), which allows importing geographic objects using vector data;
- Web Coverage Service (WCS), which provides available raw data with their metadata;
- Web Processing Service (WPS), which supplies online data processing services;
- Web Map Tile Service (WMTS), which gives online publishing services for geo-referenced map tiles.
- Additional libraries, such as OpenLayers (version 6.4.3, OSGEO, (Boundless Spatial, GeoSolutions, Refractions Research, St. Louis, MO, USA [55]) and Cesium JavaScript (Cesium JS, version 1.75; Analytic Graphics, Exton, PA, United States [56]), intended for 2D and 3D data visualization. More details about them can be found on their reference websites [59,60,61].
2.3. Data Collection and Geodatabase Construction
- Basic cartography integrates all information required to describe physical and geomorphological conditions of state-owned, municipal reference layers and the STIMARE project study areas. So, they were classified according to the covering by zone (national territory, Puglia and Emilia-Romagna). Base maps, as open street map and satellite map, were included too;
- Italian coastal layers, comprising layers covering the whole national territory produced within the Coasts Project launched in 2006 and updated in 2017 by the Italian Ministry of Environment, Land and Sea:
- Apulian coastal layers, involving the Apulian database aimed at monitoring Apulian coasts for current status and changes over time, with reference to the dune belt and the variations of the shoreline. It includes data developed by several sources, such as Department of Architecture and Urban Planning (DAU) (Politecnico di Bari), Coastal Engineering Laboratory (LIC) of the Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh) (Politecnico di Bari) and the Information System of the State Property (SID). Moreover, a textured mesh and a points cloud obtained by processing photogrammetric pictures acquired through the Remotely Piloted Aircraft Systems (RPAS) and one points cloud generated by analysing laser scanner images were implemented for the study area of Margherita di Savoia. Their comparison allowed the identification of coastal changes and any risks associated with them;
- Emilia Romagna coastal layers, including coastlines within the municipality of Riccione, acquired and extracted through a low-cost smart video camera [47]; and,
- Risk Assessment, including hazards, vulnerability, exposure, and risk layers. Besides its corresponding thematic map (coastal vulnerability index, coastal exposure index and coastal risk map), each category also includes the indicators needed to compute them. The methodology and the variables adopted to extract such information are reported in the following section.
2.4. Coastal Erosion Assessment for Puglia
2.5. Coastal Erosion Assessment for Emilia Romagna Region
3. Results
3.1. WebGIS Architecture and Performances Assessment
3.2. Web Interface
- a TOC, containing all implemented layers inserted in specific macro-categories, switch button, drawing and export tools;
- a map viewer in the middle of the page;
- an overview map in the lower-left corner;
- a scale bar at the bottom-left;
- a vertical toolbar at the top-left, containing navigation tools (zoom in, zoom out, slide zoom, zoom to layer extension and full screen);
- the button “i” at the bottom-right which provides information related to the displayed layers;
- coordinates of the mouse pointer at the top on the right.
- a TOC similar to the one implemented in the 2D viewer, containing the switch button (Figure 8A);
- a map viewer in the form of a three-dimensional globe (Figure 8B) in the middle of the page;
- at the top-right, a horizontal toolbar suitable (Figure 8C) for:
- managing tools to zoom in on locations and on the whole globe;
- selecting display options (in terms of globe or projection on a plane);
- picking the base layer; and,
- receiving information on map operation and movement commands through the “?” button;
- a timeline allowing multi-temporal analysis by creating series at the bottom (Figure 8D);
- a full screen button at the bottom-right (Figure 8E).
3.3. Coastal Erosion Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boccia, L.; Capolupo, A.; Rigillo, M.; Russo, V. Terrace Abandonment Hazards in a Mediterranean Cultural Landscape. J. Hazard. Toxic Radioact. Waste 2020, 24, 04019034. [Google Scholar] [CrossRef]
- Wong, P.P.; Losada, I.J.; Gattuso, J.P.; Hinkel, J.; Khattabi, A.; McInnes, K.L.; Saito, Y.; Sallenger, A. Coastal Systems and Low-Lying Areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 361–409. [Google Scholar]
- Capolupo, A.; Saponaro, M.; Fratino, U.; Tarantino, E. Detection of spatio-temporal changes of vegetation in coastal areas subjected to soil erosion issue. Aquat. Ecosyst. Health Manag. 2020, 1–8. [Google Scholar] [CrossRef]
- Saponaro, M.; Pratola, L.; Capolupo, A.; Saponieri, A.; Damiani, L.; Fratino, U.; Tarantino, E. Data fusion of terrestrial laser scanner and remotely piloted aircraft systems points clouds for monitoring the coastal protection systems. Aquat. Ecosyst. Health Manag. 2020, 1–7, accepted. [Google Scholar] [CrossRef]
- Capolupo, A.; Kooistra, L.; Boccia, L. A novel approach for detecting agricultural terraced landscapes from historical and contemporaneous photogrammetric aerial photos. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 800–810. [Google Scholar] [CrossRef]
- Larson, M.; Kraus, N.C. Prediction of cross-shore sediment transport at different spatial and temporal scales. Mar. Geo. 1995, 126, 111–127. [Google Scholar] [CrossRef]
- de Jonge, V.N. Water Management in The Netherlands: Development from a Defensive to an Integral Water System Approach. In Water Problems and Policies in The Netherlands; Folmer, H., Reinhard, S., Eds.; RFF-PRESS: Boca Raton, FL, USA, 2009; pp. 17–46, 257. [Google Scholar]
- MATTM-Regioni. 2018: Linee Guida per la Difesa della Costa dai Fenomeni di Erosione e Dagli Effetti dei Cambiamenti Climatici; Versione 2018—Documento elaborato dal Tavolo Nazionale sull’Erosione Costiera MATTM-Regioni con il coordinamento tecnico di ISPRA; ISPRA: Roma, Italy, 2018; p. 305. [Google Scholar]
- Rangel-Buitrago, N.; Neal, W.J.; de Jonge, V.V. Risk assessment as tool for coastal erosion management. Ocean Coast. Manag. 2020, 186, 105099. [Google Scholar] [CrossRef]
- Toure, S.; Diop, O.; Kpalma, K.; Seidou Maiga, A. Shoreline Detection using Optical Remote Sensing: A Review. ISPRS Int. J. Geo-Information 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.F.; Saponieri, A.; Molfetta, M.G.; Damiani, L. The DPSIR Approach for Coastal Risk Assessment under Climate Change at Regional Scale: The Case of Apulian Coast (Italy). J. Mar. Sci. Eng. 2020, 8, 531. [Google Scholar] [CrossRef]
- Bonaldo, D.; Antonioli, F.; Archetti, R.; Bezzi, A.; Correggiari, A.; Davolio, S.; de Falco, G.; Fantini, M.; Fontolan, G.; Furlani, S.; et al. 2019. Integrating multidisciplinary instruments for assessing coastal vulnerability to erosion and sea level rise: Lessons and challenges from the Adriatic Sea, Italy. J. Coast. Conserv. 2019, 23, 19–37. [Google Scholar] [CrossRef]
- Samaras, A.G.; Gaeta, M.G.; Miquel, A.M.; Archetti, R. Natural Hazards and Earth System High-resolution wave and hydrodynamics modelling in coastal areas: Operational applications for coastal planning, decision support and assessment. Nat. Hazards Earth Syst. Sci. 2016, 16, 1499–1518. [Google Scholar] [CrossRef] [Green Version]
- Archetti, R.; Paci, A.; Carniel, S.; Bonaldo, D. Optimal index related to the shoreline dynamics during a storm: The case of Jesolo beach. Nat. Hazards Earth Syst. Sci. 2016, 16, 1107–1122. [Google Scholar] [CrossRef] [Green Version]
- Archetti, R. 2009. Quantifying the Evolution of a Beach Protected by Low Crested Structures Using Video Monitoring. J. Coast. Res. 2009, 254, 884–899. [Google Scholar] [CrossRef]
- Archetti, R.; Damiani, L.; Bianchini, A.; Romagnoli, C.; Abbiati, M.; Addona, F.; Airoldi, L.; Cantelli, L.; Gaeta, M.G.; Guerrero, M.; et al. Innovative Strategies, Monitoring and Analysis of the Coastal Erosion Risk: The STIMARE Project. In Proceedings of the 29th International Ocean and Polar Engineering Conference, Honolulu, HI, USA, 16–21 June 2019; pp. 3836–3841. [Google Scholar]
- Sykas, D.; Biliouris, D.; Bollanos, S. Web-GIS Platform for Integrated Coastal Environmental Monitoring. 2016. Available online: https://www.geospatialworld.net (accessed on 20 February 2020).
- Kitslou, D.; Nittis, T.; Tsaknakis, A.; Esteve-Selma, M.A.; Falcao, M.; Giordanni, G.; Loubersac, L.; Tsirtsis, G. Development of a WebGIS application for supporting the management of Southern European Coastal Lagoons. In Proceedings of the GIS for the Coastal Zone: Spatial Data, Modelling and Management Extending the Spatial Data Infrastructure, New South Wales, Australia, 12–16 July 2006. [Google Scholar]
- Alesheikh, A.A.; Helali, H.; Behroz, H.A. Web GIS: Technologies and Its Applications. In Symposium on Geospatial Theory, Processing and Applications; ISPRS: Ottawa, ON, Canada, 2002. [Google Scholar]
- Soto-Garcia, M.; Del-Amor-Saavedra, P.; Martin-Gorriz, B.; Martínez-Alvarez, V. The role of information and communication technologies in the modernisation of water user associations’ management. Comput. Electron. Agric. 2013, 98, 121–130. [Google Scholar] [CrossRef]
- Kuria, E.; Kimani, S.; Mindila, A. A Framework for Web GIS Development: A Review. Int. J. Comput. Appl. 2019, 178, 0975–8887. [Google Scholar] [CrossRef]
- Caradonna, G.; Novelli, A.; Tarantino, E.; Cefalo, R.; Fratino, U. A WebGIS framework for disseminating processed remotely sensed on land cover transformations. Rep. Geod. Geoinf. 2016, 100, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, D.A. Why Open Source Software/Free Software (OSS/FS). 2007. Available online: http://www.dwheeler.com/oss_fs_why.html (accessed on 18 January 2020).
- Caradonna, G.; Tarantino, E.; Novelli, A.; Figorito, B.; Fratino, U. Un WebGIS per la divulgazione delle analisi dei processi di desertificazione del territorio della Puglia. In Proceedings of the Atti Conferenza Nazionale Asita, Lecco, Italy, 29 September–1 October 2015; pp. 217–223. [Google Scholar]
- Kitsiou, D.; Patera, A.; Tsegas, G.; Nitis, T. A webGIS Application to Assess Seawater Quality: A Case Study in a Coastal Area in the Northern Aegean Sea. J. Mar. Sci. Eng. 2021, 9, 33. [Google Scholar] [CrossRef]
- Lathrop, R.G.; Odell, J.; MacDonald, T.; Vilacoba, K.; Bognar, J.; Trimble, J.; Bruce, C.; Crichton, G.; Seminara, D.; Herb, J.; et al. The role of mid-atlantic ocean data portal in supporting ocean planning. Front. Mar. Sci. 2017, 4, 256. [Google Scholar] [CrossRef] [Green Version]
- EMODnet. Available online: https://www.emodnet.eu/geoviewer/#!/ (accessed on 14 September 2020).
- Ippoliti, C.; Di Lorenzo, A.; Caprioli, R.; Pelini, S.; Conte, A.; D’Anselmo, F.; Alessandrini, B.; Tora, S.; Giansante, C. Seagis abruzzo: A publicly available atlas of marine uses and natural resources in the adriatic sea region. Geospat. Health 2018, 13, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/local/coastal-zones (accessed on 14 September 2020).
- Kulawiak, M.; Prospathopoulos, A.; Perivoliotis, L.; Luba, M.; Kioroglou, S.; Stepnowski, A. Interactive visualization of marine pollution monitoring and forecasting data via a web-based GIS. Comput. Geosci. 2010, 36, 1069–1080. [Google Scholar] [CrossRef]
- de Castro, A.F.; Amaro, V.E.; Grigio, A.M.; Cavalcante, R.G. Modeling and development of a WebGIS for environmental monitoring of coastal areas that are influenced by the oil industry. J. Coast. Res. 2011, 64, 1643–1647. [Google Scholar]
- Tian, Y.; Huang, M.T. An integrated web-based system for the monitoring and forecasting of coastal harmful algae blooms: Application to Shenzhen city, China. J. Mar. Sci. Eng. 2019, 7, 314. [Google Scholar] [CrossRef] [Green Version]
- Mioc, D.; Nickerson, B.G.; Anton, F.; Fraser, D.; MacGillivray, E.; Morton, A.; Liang, G. Web-GIS application for flood prediction and monitoring. WIT Trans. Ecol. Environ. 2008, 118, 145–154. [Google Scholar]
- Van Ackere, S.; Glas, H.; Beullens, J.; Deruyter, G.; De Wulf, A.; De Maeyer, P. Development of a 3D Dynamic Flood WEB GIS Visualisation Tool. In Flood Risk Management and Response; WIT Press: Southampton, UK, 2016; p. 106. [Google Scholar]
- Caradonna, G.; Figorito, B.; Tarantino, E. Sharing environmental geospatial data through an open source WebGIS. In Proceedings of the Interna-tional Conference on Computational Science and Its Applications, Banff, AB, Canada, 22–25 June 2015; Springer: Cham, Switzerland, 2015; pp. 556–565. [Google Scholar]
- Lathrop, R.; Auermuller, L.; Trimble, J.; Bognar, J. The Application of WebGIS Tools for Visualizing Coastal Flooding Vulner-ability and Planning for Resiliency: The New Jersey Experience. ISPRS Int. J. Geo-Inf. 2014, 3, 408–429. [Google Scholar] [CrossRef]
- Ogryzek, M.; Tarantino, E.; Rząsa, K. Infrastructure of the Spatial Information in the European Community (INSPIRE) Based on Examples of Italy and Poland. ISPRS Int. J. Geo-Inf. 2020, 9, 755. [Google Scholar] [CrossRef]
- Apulian Monitoring Network. Available online: http://93.51.158.171/web/simop/home (accessed on 22 April 2018).
- Bruno, M.F.; Molfetta, M.G.; Petrillo, A.F. The influence of interannual variability of mean sea level in the Adriatic Sea on extreme values. J. Coast. Res. 2014, 70, 241–246. [Google Scholar] [CrossRef]
- Pasquali, D.; Bruno, M.F.; Celli, D.; Damiani, L.; Di Risio, M. A simplified hindcast method for the estimation of extreme storm surge events in semi-enclosed basins. Appl. Ocean Res. 2019, 85, 45–52. [Google Scholar] [CrossRef]
- Valentini, N.; Saponieri, A.; Danisi, A.; Pratola, L.; Damiani, L. Exploiting remote imagery in an embayed sandy beach for the validation of a runup model framework. Estuarine. Coast. Shelf Sci. 2019, 225, 106244. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, F.; Tomasicchio, G.R.; Francone, A.; Leone, E.; Frega, F.; Chiaia, G.; Saponieri, A.; Damiani, L. Coastal sand dune restoration with an eco-friendly technique. Aquat. Ecosyst. Health Manag. 2020. [Google Scholar] [CrossRef]
- Saponieri, A.; Valentini, N.; Di Risio, M.; Pasquali, D.; Damiani, L. Laboratory Investigation on the Evolution of a Sandy Beach Nourishment Protected by a Mixed Soft–Hard System. Water 2018, 10, 1171. [Google Scholar] [CrossRef] [Green Version]
- Ciavola, P.; Armaroli, C.; Chiggiato, J.; Valentini, A.; Deserti, M.; Perini, L.; Luciani, P. Impact of storms along the coastline of Emilia-Romagna: The morphological signature on the Ravenna coastline (Italy). J. Coast. Res. 2007, 2007, 540–544. [Google Scholar]
- IDROSER. Progetto di Piano per la Difesa dal Mare e la Riqualificazione Ambientale del Litorale della Regione Emilia-Romagna; Regione Emilia-Romagna-Idroser: Bologna, Italy, 1996. [Google Scholar]
- Bianchini, A.; Guzzini, A.; Pellegrini, M.; Saccani, C.; Gaeta, M.G.; Archetti, R. Coastal erosion mitigation through ejector devices application. Ital. J. Eng. Geol. Environ. 2020, 1, 13–22. [Google Scholar] [CrossRef]
- Pellegrini, M.; Aghakhani, A.; Gaeta, M.G.; Archetti, R.; Guzzini, A.; Saccani, C. Effectiveness assessment of an innovative ejectors plant for port sediment management. J. Mar. Sci. Eng. 2021, 9, 197. [Google Scholar] [CrossRef]
- Huxhold, W.E.; Levinsohn, A.G. Managing geographic information system projects. Cartographica 1995, 32, 63. [Google Scholar]
- Apache Tomcat. Available online: http://tomcat.apache.org/ (accessed on 10 March 2020).
- PostgreSQL: The World’s Most Advanced Open Source Relational Database. Available online: https://www.postgresql.org/ (accessed on 22 April 2020).
- Ramsey, P. The state of PostGIS. In Proceedings of the FOSS4G 2011 Conference, Denver, CO, USA, 6 March 2014; Available online: http://s3.cleverelephant.ca/stateof-postgis-2011-foss4g.pdf (accessed on 12 December 2019).
- Geoserver. Available online: http://geoserver.org/ (accessed on 3 March 2020).
- Getbootstrap. Available online: https://getbootstrap.com/ (accessed on 21 October 2019).
- W3.CSS. Available online: https://www.w3schools.com/w3css/ (accessed on 20 October 2019).
- Openlayers. Available online: https://openlayers.org/ (accessed on 3 March 2020).
- Cesium JS. Available online: https://cesium.com (accessed on 4 March 2020).
- Carter, B. HTML Architecture, a Novel Development System (HANDS). An approach for web development. In Proceedings of the 2014 Annual Global Online Conference on Information and Computer Technology, Louisville, KY, USA, 3–5 December 2014. [Google Scholar]
- Agrawal, S.; Dev Gupta, R. Development and Comparison of Open Source Based Web Gis Frameworks on Wamp and Apache Tomcat Web Servers. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Suzhou, China, 14–16 May 2014; Volume XL-4. [Google Scholar]
- Fustes, D.; Cantorna, D.; Dafonte, C.; Arcay, B.; Iglesias, A.; Manteiga, M. A cloud-integrated web platform for marine monitoring using GIS and remote sensing. Application to oil spill detection through SAR images. Future Gener. Comput. Syst. 2013, 34, 155–160. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, Z. A Method of Using GeoServer to Publish Economy Geographical Information. In Proceedings of the 2011 International Conference on Control, Automation and Systems Engineering (CASE), Singapore, 30–31 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Boccardo, P.; Bordogna, G.; Pepe, A.; Crespi, M.; Munafò, M.; Pirotti, F. Urban Geo Big Data. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Bucharest, Romania, 26–30 August 2019; Volume XLII-4/W14. [Google Scholar]
- Kommana, K. Implementation of a Geoserver Application for GIS Data Distribution and Manipulation. Master’s Thesis, Physical Geography and Quaternary Geology, Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden, 2013. [Google Scholar]
- Caradonna, G.; Frigorito, B.; Novelli, A.; Tarantino, E.; Fratino, U. Geomatic Techniques for Disseminating Processed Remotely Sensed Open Data in an Interactive WebGIS. Plurimondi. 2017. Available online: http://193.204.49.18/index.php/Plurimondi/article/view/47 (accessed on 19 May 2021).
- Geoportale Nazionale. Available online: http://www.pcn.minambiente.it/mattm/ (accessed on 3 January 2020).
- ISTAT. Available online: https://www.istat.it/ (accessed on 2 February 2020).
- SIT Puglia. Available online: http://www.sit.puglia.it/ (accessed on 16 December 2019).
- ARPAE Emilia Romana. Available online: https://www.arpae.it/dettaglio_notizia.asp?id=11728&idlivello=1504 (accessed on 15 December 2019).
- Geoportale Emilia-Romagna. Available online: https://geoportale.regione.emilia-romagna.it/ (accessed on 5 December 2019).
- Aguzzi, M.; De Nigris, N.; Preti, M.; Mallegni, R. Nuovi indicatori per lo studio e la gestione della costa emiliano-romagnola. Studi Costieri 2012, 20, 95–109. [Google Scholar]
- Arpa. Stato del Litorale Emiliano-Romagnolo All’anno 2007 e Piano Decennale di Gestione; I quaderni di Arpa: Bologna, Italy, 2008; p. 272. ISBN 88-8754-21-1. [Google Scholar]
- Arpa. Stato del Litorale Emiliano-Romagnolo al 2018 Erosione e Interventi di Difesa; I quaderni di Arpa: Bologna, Italy, 2020; p. 222. ISBN 978-88-87854-48-0. [Google Scholar]
- RER. Indicatori di Suscettibilita’costiera ai Fenomeni di Erosione e Inondazione Marina. Rapporti Tecnici del Servizio Geologico sismico e dei Suoli. 2019. Available online: http://ambiente.regione.emilia-romagna.it/geologia/cosa-fa-la-regione-2 (accessed on 16 March 2018).
- Github. Available online: https://github.com/google/draco (accessed on 16 May 2020).
- Lilley, S. Compressive Massive Points Cloud with 3D Tiles and Draco. Cesium Blog. 2019. Available online: https://cesium.com/blog/2019/02/26/draco-point-clouds/ (accessed on 3 November 2019).
- WebP. Available online: https://developers.google.com/speed/webp (accessed on 16 May 2020).
- Shehata, O. Faster and Smaller 3D Tiles with WebP Image Compression. Cesium Blog. 2019. Available online: https://cesium.com/blog/2019/02/12/faster-3d-tiles-streaming-webp/ (accessed on 12 September 2019).
- Haynes, D.; Ray, S.; Manson, S.M.; Soni, A. High Performance Analysis of Big Spatial Data. In Proceedings of the 2015 IEEE International Conference on Big Data, Santa Clara, CA, USA, 29 October–1 November 2015). [Google Scholar]
- Ružicka, J. Comparing speed of Web Map Service with GeoServer on ESRI Shapefile and PostGIS. Geoinformatics 2016, 15, 3–9. [Google Scholar]
- Geoext3. Available online: http://geoext.github.io/geoext3/ (accessed on 16 May 2020).
- Caradonna, G.; Lionetti, S.; Tarantino, E.; Verdoscia, C. A comparison of low-poly algorithms for sharing 3D models on the web. In New Advanced GNSS and 3D Spatial Techniques; Springer: Cham, Switzerland, 2018; pp. 237–244. [Google Scholar]
- Caradonna, G.; Novelli, A.; Tarantino, E.; Figorito, B.; Fratino, U. Implementing an OGC (Open Geospatial Consortium) Web Processing Service in a WebGIS Framework to Analyze Satellite Data. 2016. Available online: https://gnss.dia.units.it/images/gnss/doc/2016_02_20_morning/05_tarantino/Presentazione_Tarantino_%20trieste2016.pdf (accessed on 13 October 2019).
- Worldwide. Available online: https://worldwind.arc.nasa.gov/ (accessed on 19 May 2020).
Coastal Exposure Variables | Acronym | Weights | ||
---|---|---|---|---|
0 | 1 | 2 | ||
Urban and/or industrial area in RICE (%) | URICE | <10 | 10–40 | >40 |
High ecological value areas in RICE (%) | ERICE | <5 | 5–30 | >30 |
Resident population in RICE (1000 hab.) | PRICE | <5 | 5–20 | >20 |
Increase in urban area in a 10 km wide coastal area (%) | U10km | <5 | 5–10 | >10 |
Coastal Vulnerability Variables | Acronym | Weights | ||
---|---|---|---|---|
0 | 1 | 2 | ||
Average speed of Sea Level Rise (mm/yr) | SLR | <0 | 0–4 | >4 |
Highest water level (m) | HWL | <1.5 | 1.5–3 | >3 |
Coastal Geology- Rocky shoreline (%) | GEC | >70 | 40–70 | <40 |
Municipal area in RICE (%) | ARICE | <5 | 5–10 | >10 |
Past Shoreline erosion (%) | PSE | <20 | 20–60 | >60 |
Recent shoreline erosion (%) | RSE | <20 | 20–60 | >60 |
Hydraulic hazard in RICE (%) | HHRICE | <10 | 10–20 | >20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capolupo, A.; Monterisi, C.; Saponieri, A.; Addona, F.; Damiani, L.; Archetti, R.; Tarantino, E. An Interactive WebGIS Framework for Coastal Erosion Risk Management. J. Mar. Sci. Eng. 2021, 9, 567. https://doi.org/10.3390/jmse9060567
Capolupo A, Monterisi C, Saponieri A, Addona F, Damiani L, Archetti R, Tarantino E. An Interactive WebGIS Framework for Coastal Erosion Risk Management. Journal of Marine Science and Engineering. 2021; 9(6):567. https://doi.org/10.3390/jmse9060567
Chicago/Turabian StyleCapolupo, Alessandra, Cristina Monterisi, Alessandra Saponieri, Fabio Addona, Leonardo Damiani, Renata Archetti, and Eufemia Tarantino. 2021. "An Interactive WebGIS Framework for Coastal Erosion Risk Management" Journal of Marine Science and Engineering 9, no. 6: 567. https://doi.org/10.3390/jmse9060567
APA StyleCapolupo, A., Monterisi, C., Saponieri, A., Addona, F., Damiani, L., Archetti, R., & Tarantino, E. (2021). An Interactive WebGIS Framework for Coastal Erosion Risk Management. Journal of Marine Science and Engineering, 9(6), 567. https://doi.org/10.3390/jmse9060567