Frazil Ice in the Antarctic Marginal Ice Zone
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doble, M.J.; Coon, M.D.; Wadhams, P. Pancake ice formation in the Weddell Sea. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Turner, J.; Bracegirdle, T.J.; Phillips, T.; Marshall, G.J.; Hosking, J.S. An Initial Assessment of Antarctic Sea Ice Extent in the CMIP5 Models. J. Clim. 2013, 26, 1473–1484. [Google Scholar] [CrossRef]
- Squire, V.A. Past, present and impendent hydroelastic challenges in the polar and subpolar seas. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2813–2831. [Google Scholar] [CrossRef] [PubMed]
- Squire, V. Ocean Wave Interactions with Sea Ice: A Reappraisal. Annu. Rev. Fluid Mech. 2020, 52, 37–60. [Google Scholar] [CrossRef] [Green Version]
- Lange, M.A.; Ackley, S.F.; Wadhams, P.; Dieckmann, G.S.; Eicken, H. Development of Sea Ice in the Weddell Sea. Ann. Glaciol. 1989, 12, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Daly, S.F. International Association for Hydraulic Research Working Group on Thermal Regimes Report on Frazil Ice; American Society for Testing and Materials: Philadelphia, PA, USA, 1994. [Google Scholar]
- Martin, S. Frazil Ice in Rivers and Oceans. Annu. Rev. Fluid Mech. 1981, 13, 379–397. [Google Scholar] [CrossRef]
- McFarlane, V.; Loewen, M.; Hicks, F. Measurements of the evolution of frazil ice particle size distributions. Cold Reg. Sci. Technol. 2015, 120, 45–55. [Google Scholar] [CrossRef]
- Maksym, T.; Stammerjohn, S.E.; Ackley, S.; Massom, R. Antarctic sea ice- A polar opposite? Oceanography 2012, 25, 140–151. [Google Scholar] [CrossRef]
- Eicken, H. From the Microscopic, to the Macroscopic, to the Regional Scale: Growth, Microstructure and Properties of Sea Ice. In Sea Ice; Blackwell Science Ltd.: Oxford, UK, 2003; pp. 22–81. [Google Scholar]
- De Santi, F.; Olla, P. Limit regimes of ice formation in turbulent supercooled water. Phys. Rev. E 2017, 96, 043106. [Google Scholar] [CrossRef] [Green Version]
- Meylan, M.H.; Bennetts, L.G.; Mosig, J.; Rogers, W.; Doble, M.J.; Peter, M.A. Dispersion Relations, Power Laws, and Energy Loss for Waves in the Marginal Ice Zone. J. Geophys. Res. Ocean. 2018, 123, 3322–3335. [Google Scholar] [CrossRef]
- Meylan, M.H.; Bennetts, L.G.; Kohout, A.L. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone. Geophys. Res. Lett. 2014, 41, 5046–5051. [Google Scholar] [CrossRef]
- Rabault, J.; Sutherland, G.; Gundersen, O.; Jensen, A. Measurements of wave damping by a grease ice slick in Svalbard using off-the-shelf sensors and open-source electronics. J. Glaciol. 2017, 63, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Kodaira, T.; Waseda, T.; Nose, T.; Sato, K.; Inoue, J.; Voermans, J.; Babanin, A. Observation of on-ice wind waves under grease ice in the western Arctic Ocean. Polar Sci. 2020, 27, 100567. [Google Scholar] [CrossRef]
- Smith, M.M.; Thomson, J. Ocean Surface Turbulence in Newly Formed Marginal Ice Zones. J. Geophys. Res. Ocean. 2019, 124, 1382–1398. [Google Scholar] [CrossRef]
- Sutherland, B.R.; Balmforth, N.J. Damping of surface waves by floating particles. Phys. Rev. Fluids 2019, 4, 014804. [Google Scholar] [CrossRef]
- Squire, V.A.; Montiel, F. Evolution of Directional Wave Spectra in the Marginal Ice Zone: A New Model Tested with Legacy Data. J. Phys. Oceanogr. 2016, 46, 3121–3137. [Google Scholar] [CrossRef]
- Martin, S.; Kauffman, P. A Field and Laboratory Study of Wave Damping by Grease Ice. J. Glaciol. 1981, 27, 283–313. [Google Scholar] [CrossRef] [Green Version]
- Timco, G.; Weeks, W. A review of the engineering properties of sea ice. Cold Reg. Sci. Technol. 2010, 60, 107–129. [Google Scholar] [CrossRef]
- Yiew, L.J.; Bennetts, L.G.; Meylan, M.H.; Thomas, G.A.; French, B.J. Wave-induced collisions of thin floating disks. Phys. Fluids 2017, 29, 127102. [Google Scholar] [CrossRef] [Green Version]
- Herman, A.; Cheng, S.; Shen, H.H. Wave energy attenuation in fields of colliding ice floes—Part 1: Discrete-element modelling of dissipation due to ice–water drag. Cryosphere 2019, 13, 2887–2900. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, G.; Rabault, J.; Christensen, K.H.; Jensen, A. A two layer model for wave dissipation in sea ice. Appl. Ocean. Res. 2019, 88, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Kohout, A.L.; Meylan, M.; Plew, D.R. Wave attenuation in a marginal ice zone due to the bottom roughness of ice floes. Ann. Glaciol. 2011, 52, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Voermans, J.J.; Rabault, J.; Filchuk, K.; Ryzhov, I.; Heil, P.; Marchenko, A.; Iii, C.O.C.; Dabboor, M.; Sutherland, G.; Babanin, A.V. Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up. Cryosphere 2020, 14, 4265–4278. [Google Scholar] [CrossRef]
- Thomson, J.A.L.; Rogers, W. Swell and sea in the emerging Arctic Ocean. Geophys. Res. Lett. 2014, 41, 3136–3140. [Google Scholar] [CrossRef]
- Newyear, K.; Martin, S. Comparison of laboratory data with a viscous two-layer model of wave propagation in grease ice. J. Geophys. Res. Space Phys. 1999, 104, 7837–7840. [Google Scholar] [CrossRef]
- Wang, R.; Shen, H.H. Experimental study on surface wave propagating through a grease–pancake ice mixture. Cold Reg. Sci. Technol. 2010, 61, 90–96. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, H.H. Wave propagation in frazil/pancake, pancake, and fragmented ice covers. Cold Reg. Sci. Technol. 2015, 113, 71–80. [Google Scholar] [CrossRef]
- Rabault, J.; Sutherland, G.; Jensen, A.; Christensen, K.H.; Marchenko, A. Experiments on wave propagation in grease ice: Combined wave gauges and particle image velocimetry measurements. J. Fluid Mech. 2019, 864, 876–898. [Google Scholar] [CrossRef] [Green Version]
- Wadhams, P.; Parmiggiani, F.; de Carolis, G. Wave dispersion by antarctic pancake ice from SAR images: A method for measuring ICE thickness. In Proceedings of the SEASAR 2006 Advances in SAR Oceanography from Envisat and ERS Missions, Frascati, Italy, 23–26 January 2006. no. ESA SP-613. [Google Scholar]
- Rogers, W.E.; Thomson, J.; Shen, H.H.; Doble, M.J.; Wadhams, P.; Cheng, S. Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea. J. Geophys. Res. Ocean. 2016, 121, 7991–8007. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, S.; Lamb, H.; Müller, W. Hydrodynamics. Math. Gaz. 1933, 17, 215. [Google Scholar] [CrossRef]
- Kaleschke, L.; Lüpkes, C.; Vihma, T.; Haarpaintner, J.; Bochert, A.; Hartmann, J.; Heygster, G. SSM/I Sea Ice Remote Sensing for Mesoscale Ocean-Atmosphere Interaction Analysis. Can. J. Remote Sens. 2001, 27, 526–537. [Google Scholar] [CrossRef]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Dzuy, N.Q.; Boger, D.V. Yield Stress Measurement for Concentrated Suspensions. J. Rheol. 1983, 27, 321–349. [Google Scholar] [CrossRef]
- Steffe, J.F. Rheological Methods in Food Process Engineering; Freeman Press: East Lansing, MI, USA, 1992. [Google Scholar]
- Smedsrud, L.H. Grease-ice thickness parameterization. Ann. Glaciol. 2011, 52, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Mezger, T. Fittung functions for flow and viscosity curves. In The Rheology Handbook; Vincentz Network: Hannover, German, 2009; pp. 59–64. [Google Scholar]
- Macosko, C.W. Rheology: Principles, Measurements and Applications; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Alberello, A.; Bennetts, L.; Heil, P.; Eayrs, C.; Vichi, M.; MacHutchon, K.; Onorato, M.; Toffoli, A. Drift of Pancake Ice Floes in the Winter Antarctic Marginal Ice Zone During Polar Cyclones. J. Geophys. Res. Ocean. 2020, 125, 1–16. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, F.; Mielke, T.; Schwarz, C.; Schröder, J.; Rampai, T.; Skatulla, S.; Audh, R.R.; Hepworth, E.; Vichi, M.; Lupascu, D.C. Frazil Ice in the Antarctic Marginal Ice Zone. J. Mar. Sci. Eng. 2021, 9, 647. https://doi.org/10.3390/jmse9060647
Paul F, Mielke T, Schwarz C, Schröder J, Rampai T, Skatulla S, Audh RR, Hepworth E, Vichi M, Lupascu DC. Frazil Ice in the Antarctic Marginal Ice Zone. Journal of Marine Science and Engineering. 2021; 9(6):647. https://doi.org/10.3390/jmse9060647
Chicago/Turabian StylePaul, Felix, Tommy Mielke, Carina Schwarz, Jörg Schröder, Tokoloho Rampai, Sebastian Skatulla, Riesna R. Audh, Ehlke Hepworth, Marcello Vichi, and Doru C. Lupascu. 2021. "Frazil Ice in the Antarctic Marginal Ice Zone" Journal of Marine Science and Engineering 9, no. 6: 647. https://doi.org/10.3390/jmse9060647
APA StylePaul, F., Mielke, T., Schwarz, C., Schröder, J., Rampai, T., Skatulla, S., Audh, R. R., Hepworth, E., Vichi, M., & Lupascu, D. C. (2021). Frazil Ice in the Antarctic Marginal Ice Zone. Journal of Marine Science and Engineering, 9(6), 647. https://doi.org/10.3390/jmse9060647