A Review of Marine Viruses in Coral Ecosystem
Abstract
:1. Coral Ecosystem
2. Progress of Marine Virus Research
3. Marine Viruses and Their Host
4. Coral Viruses
5. Coral Fish Viruses
6. Marine Sponge Viruses
Detection Method | Viruses | Sponge Species | References |
---|---|---|---|
Transmission Electron Microscopy | Podoviridae, Siphoviridae, Inoviridae, Myoviridae | Carteriospongia foliascens, Stylissa carteri, Xestospongia sp., Lamellodysidea herbacea, Xestospongia testudinaria, Mycale sp. | [195] |
Metagenome | Siphoviridae, Myoviridae, Podoviridae, Phycodnaviridae, Poxviridae, Mimiviridae | Lubomirskia baikalensis, Acropora millepora | [198] |
Metagenome | Myoviridae, Podoviridae | Dysidea etheria, Darwinella sp. | [199] |
Metagenome | Circoviridae, Inoviridae, Polydnaviridae, Myoviridae, Siphoviridae | Rhopaloeides odorabile | [200] |
Metavirome | Myoviridae, Phycodnaviridae, Poxviridae, Podoviridae, Mimiviridae, Herpesviridae, Baculoviridae | Baikalospongia bacilifera | [201] |
Metagenome | Herpes-like virus | Halichondria panicea | [211] |
Metagenome | Dicistoviridae | Hymeniaciadon sp. | [212] |
7. Detection Methods for Marine Viruses in Coral Ecosystem
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weynberg, K.D. Viruses in Marine Ecosystems: From Open Waters to Coral Reefs. Adv. Clin. Chem. 2018, 101, 1–38. [Google Scholar] [CrossRef]
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How Many Species Are There on Earth and in the Ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazave, E.; Lapébie, P.; Ereskovsky, A.; Vacelet, J.; Renard, E.; Cárdenas, P.; Borchiellini, C. No longer Demospongiae: Homoscleromorpha formal nomination as a fourth class of Porifera. Hydrobiologia 2012, 687, 3–10. [Google Scholar] [CrossRef]
- Wulff, J.L. Ecological interactions of marine sponges. Can. J. Zool. 2006, 84, 146–166. [Google Scholar] [CrossRef]
- Hentschel, U.; Piel, J.; Degnan, S.; Taylor, M.W. Genomic insights into the marine sponge microbiome. Nat. Rev. Genet. 2012, 10, 641–654. [Google Scholar] [CrossRef]
- Bell, J.J. The functional roles of marine sponges. Estuar. Coast. Shelf Sci. 2008, 79, 341–353. [Google Scholar] [CrossRef]
- Wulff, J.L. Sponge-mediated coral reef growth and rejuvenation. Coral Reefs 1984, 3, 157–163. [Google Scholar] [CrossRef]
- Rützler, K. Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol. Hisp. 2002, 37, 61–72. [Google Scholar]
- González-Rivero, M.; Yakob, L.; Mumby, P. The role of sponge competition on coral reef alternative steady states. Ecol. Model. 2011, 222, 1847–1853. [Google Scholar] [CrossRef]
- Aerts, L. Sponge/coral interactions in Caribbean reefs: Analysis of overgrowth patterns in relation to species identity and cover. Mar. Ecol. Prog. Ser. 1998, 175, 241–249. [Google Scholar] [CrossRef]
- Cole, A.J.; Pratchett, M.S.; Jones, G. Diversity and functional importance of coral-feeding fishes on tropical coral reefs. Fish Fish. 2008, 9, 286–307. [Google Scholar] [CrossRef]
- Putnam, H.M.; Barott, K.L.; Ainsworth, T.; Gates, R.D. The Vulnerability and Resilience of Reef-Building Corals. Curr. Biol. 2017, 27, R528–R540. [Google Scholar] [CrossRef] [Green Version]
- Tresguerres, M.; Barott, K.L.; Barron, M.E.; Deheyn, D.D.; Kline, D.I.; Linsmayer, L.B. Cell Biology of Reef-Building Corals: Ion Transport, Acid/Base Regulation, and Energy Metabolism. In Acid-Base Balance and Nitrogen Excretion in Invertebrates; Weihrauch, D., O’Donnell, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Shah, S.B. Coral Reef Ecosystem. In Heavy Metals in Scleractinian Corals; Springer: Cham, Switzerland, 2021; pp. 27–53. [Google Scholar] [CrossRef]
- Muller-Parker, G.; D’Elia, C.F.; Cook, C.B. Interactions between Corals and Their Symbiotic Algae. In Coral Reefs in the Anthropocene; Birkeland, C., Ed.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Cziesielski, M.J.; Schmidt-Roach, S.; Aranda, M. The past, present, and future of coral heat stress studies. Ecol. Evol. 2019, 9, 10055–10066. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.W.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K. The human imperative of stabilizing global climate change at 1.5C. Science 2019, 365, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Cardini, U.; Bednarz, V.N.; Foster, R.A.; Wild, C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol. Evol. 2014, 4, 1706–1727. [Google Scholar] [CrossRef]
- de Goeij, J.M.; van Oevelen, D.; Vermeij, M.J.A.; Osinga, R.; Middelburg, J.J.; de Goeij, A.F.P.; Admiraal, W. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 2013, 342, 108–110. [Google Scholar] [CrossRef]
- Littman, R.; Willis, B.L.; Bourne, D.G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef. Environ. Microbiol. Rep. 2011, 3, 651–660. [Google Scholar] [CrossRef] [PubMed]
- van Oppen, M.J.H.; Blackall, L.L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 2019, 17, 557–567. [Google Scholar] [CrossRef]
- Bourne, D.G.; Iida, Y.; Uthicke, S.; Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2007, 2, 350–363. [Google Scholar] [CrossRef]
- Glasl, B.; Webster, N.; Bourne, D.G. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Mar. Biol. 2017, 164, 91. [Google Scholar] [CrossRef]
- Lee, S.T.M.; Davy, S.K.; Tang, S.-L.; Kench, P.S. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata. Front. Microbiol. 2016, 7, 371. [Google Scholar] [CrossRef] [PubMed]
- Vanwonterghem, I.; Webster, N.S. Coral Reef Microorganisms in a Changing Climate. iScience 2020, 23, 100972. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.P.; Kerry, J.T.; Álvarez-Noriega, M.; Álvarez-Romero, J.G.; Anderson, K.D.; Baird, A.H.; Babcock, R.C.; Beger, M.; Bellwood, D.R.; Berkelmans, R. Global warming and recurrent mass bleaching of corals. Nature 2017, 543, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, J.R.; Burkepile, D.E.; Thurber, R.V. A Vicious Circle? Altered Carbon and Nutrient Cycling May Explain the Low Resilience of Caribbean Coral Reefs. Bioscience 2016, 66, 470–476. [Google Scholar] [CrossRef]
- Thurber, R.V.; Payet, J.P.; Thurber, A.R.; Correa, A.M.S. Virus–host interactions and their roles in coral reef health and disease. Nat. Rev. Genet. 2017, 15, 205–216. [Google Scholar] [CrossRef]
- Wilson, W.H.; Chapman, D.M. Observation of virus like particles in thin sections of the plumose anemone, Metridium senile. J. Mar. Biol. Assoc. U. K. 2011, 81, 879–880. [Google Scholar] [CrossRef]
- Patten, N.L.; Harrison, P.; Mitchell, J.G. Prevalence of virus-like particles within a staghorn scleractinian coral (Acropora muricata) from the Great Barrier Reef. Coral Reefs 2008, 27, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Leruste, A.; Bouvier, T.; Bettarel, Y. Enumerating Viruses in Coral Mucus. Appl. Environ. Microbiol. 2012, 78, 6377–6379. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Kim, H.; Bettarel, Y.; Bouvier, T.; Bouvier, C.; Doan-Nhu, H.; Nguyen-Ngoc, L.; Nguyen-Thanh, T.; Tran-Quang, H.; Brune, J. Coral Mucus Is a Hot Spot for Viral Infections. Appl. Environ. Microbiol. 2015, 81, 5773–5783. [Google Scholar] [CrossRef] [Green Version]
- Bettarel, Y.; Thuy, N.T.; Huy, T.Q.; Hoang, P.K.; Bouvier, T. Observation of virus-like particles in thin sections of the bleaching scleractinian coral Acropora cytherea. J. Mar. Biol. Assoc. U. K. 2012, 93, 909–912. [Google Scholar] [CrossRef]
- Cram, J.; Parada, A.E.; Fuhrman, J.A. Dilution reveals how viral lysis and grazing shape microbial communities. Limnol. Oceanogr. 2016, 61, 889–905. [Google Scholar] [CrossRef] [Green Version]
- Rohwer, F.; Thurber, R.V. Viruses manipulate the marine environment. Nature 2009, 459, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.; Zeng, Q.; Kelly, L.; Huang, K.H.; Singer, A.U.; Stubbe, J.; Chisholm, S.W. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl. Acad. Sci. USA 2011, 108, E757–E764. [Google Scholar] [CrossRef] [Green Version]
- Lindell, D.; Sullivan, M.B.; Johnson, Z.; Tolonen, A.; Rohwer, F.; Chisholm, S.W. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 11013–11018. [Google Scholar] [CrossRef] [Green Version]
- Breitbart, M. Marine Viruses: Truth or Dare. Annu. Rev. Mar. Sci. 2012, 4, 425–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roossinck, M.J. Plants, viruses and the environment: Ecology and mutualism. Virology 2015, 479–480, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Gustavsen, J.A.; Winget, D.M.; Etian, X.; Suttle, C.A. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front. Microbiol. 2014, 5, 703. [Google Scholar] [CrossRef] [Green Version]
- Kline, D.; Kuntz, N.; Breitbart, M.; Knowlton, N.; Rohwer, F. Role of elevated organic carbon levels and microbial activity in coral mortality. Mar. Ecol. Prog. Ser. 2006, 314, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.E.; Price, N.N.; Nelson, C.E.; Haas, A.F. Coupled changes in oxygen concentration and pH caused by metabolism of benthic coral reef organisms. Mar. Biol. 2013, 160, 2437–2447. [Google Scholar] [CrossRef]
- Correa, A.M.S.; Ainsworth, T.; Rosales, S.M.; Thurber, A.R.; Butler, C.R.; Thurber, R.L.V. Viral Outbreak in Corals Associated with an In Situ Bleaching Event: Atypical Herpes-Like Viruses and a New Megavirus Infecting Symbiodinium. Front. Microbiol. 2016, 7, 127. [Google Scholar] [CrossRef]
- Soffer, N.; Brandt, M.E.; Correa, A.M.S.; Smith, T.B.; Thurber, R.V. Potential role of viruses in white plague coral disease. ISME J. 2014, 8, 271–283. [Google Scholar] [CrossRef]
- Sweet, M.; Bythell, J. The role of viruses in coral health and disease. J. Invertebr. Pathol. 2017, 147, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood-Charlson, E.M.; Weynberg, K.; Suttle, C.; Roux, S.; Van Oppen, M.J.H. Metagenomic characterization of viral communities in corals: Mining biological signal from methodological noise. Environ. Microbiol. 2015, 17, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- Suttle, C.A. Viruses in the sea. Nature 2005, 437, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Dell’Anno, A.; Corinaldesi, C.; Magagnini, M.; Noble, R.; Tamburini, C.; Weinbauer, M. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 2008, 454, 1084–1087. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, B.L.; Brum, J.R.; Sullivan, M.B. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015, 9, 472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, R. A Marine Bacteriophage. Nature 1955, 175, 690–691. [Google Scholar] [CrossRef]
- Weitz, J.S.; Wilhelm, S. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol. Rep. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Fuhrman, J.A. Marine viruses and their biogeochemical and ecological effects. Nature 1999, 399, 541–548. [Google Scholar] [CrossRef]
- Kirchmann, D.L. (Ed.) Microbial Ecology of the Oceans; Wiley Series in Ecological and Applied Microbiology; Liss/Wiley: New York, NY, USA, 2000; 542p, ISBN 0-471-29992-8. [Google Scholar]
- Wommack, K.E.; Colwell, R.R. Virioplankton: Viruses in Aquatic Ecosystems. Microbiol. Mol. Biol. Rev. 2000, 64, 69–114. [Google Scholar] [CrossRef] [Green Version]
- Thingstad, T.F. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol. Oceanogr. 2000, 45, 1320–1328. [Google Scholar] [CrossRef]
- Suttle, C.; Chan, A. Marine cyanophages infecting oceanic and coastal strains of Synechococcus: Abundance, morphology, cross-infectivity and growth characteristics. Mar. Ecol. Prog. Ser. 1993, 92, 99–109. [Google Scholar] [CrossRef]
- Waterbury, J.B.; Valois, F.W. Resistance to Co-Occurring Phages Enables Marine Synechococcus Communities to Coexist with Cyanophages Abundant in Seawater. Appl. Environ. Microbiol. 1993, 59, 3393–3399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, M.B.; Waterbury, J.B.; Chisholm, S. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 2003, 424, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.B.; Coleman, M.; Weigele, P.; Rohwer, F.; Chisholm, S.W. Three Prochlorococcus Cyanophage Genomes: Signature Features and Ecological Interpretations. PLoS Biol. 2005, 3, e144. [Google Scholar] [CrossRef] [Green Version]
- Culley, A.I.; Lang, A.S.; Suttle, C.A. High diversity of unknown picorna-like viruses in the sea. Nature 2003, 424, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Fuller, N.J.; Wilson, W.H.; Joint, I.R.; Mann, N.H. Occurrence of a Sequence in Marine Cyanophages Similar to That of T4 g20 and Its Application to PCR-Based Detection and Quantification Techniques. Appl. Environ. Microbiol. 1998, 64, 2051–2060. [Google Scholar] [CrossRef] [Green Version]
- Tétart, F.; Desplats, C.; Kutateladze, M.; Monod, C.; Ackermann, H.-W.; Krisch, H.M. Phylogeny of the Major Head and Tail Genes of the Wide-Ranging T4-Type Bacteriophages. J. Bacteriol. 2001, 183, 358–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steward, G.; Montiel, J.L.; Azam, F. Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol. Oceanogr. 2000, 45, 1697–1706. [Google Scholar] [CrossRef] [Green Version]
- Breitbart, M.; Salamon, P.; Andresen, B.; Mahaffy, J.M.; Segall, A.M.; Mead, D.; Azam, F.; Rohwer, F. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 2002, 99, 14250–14255. [Google Scholar] [CrossRef] [Green Version]
- Edwards, R.A.; Rohwer, F. Viral metagenomics. Nat. Rev. Genet. 2005, 3, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Brum, J.R.; Sullivan, M.B. Rising to the challenge: Accelerated pace of discovery transforms marine virology. Nat. Rev. Genet. 2015, 13, 147–159. [Google Scholar] [CrossRef]
- He, T.; Jin, M.; Zhang, X. Marine Viruses. In Virus Infection and Tumorigenesis; Springer: Singapore, 2019; pp. 25–62. [Google Scholar]
- Van Etten, J.L.; Dunigan, D.D.; Nagasaki, K.; Schroeder, D.C.; Grimsley, N.; Brussaard, C.P.; Nissimov, J. Phycodnaviruses (Phycodnaviridae). In Encyclopedia of Virology; Academic Press: Cambridge, MA, USA, 2021; pp. 687–695. [Google Scholar]
- Breitbart, M.; Bonnain, C.; Malki, K.; Sawaya, N.A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 2018, 3, 754–766. [Google Scholar] [CrossRef] [PubMed]
- De Corte, D.; Sintes, E.; Yokokawa, T.; Lekunberri, I.; Herndl, G.J. Large-scale distribution of microbial and viral populations in the South Atlantic Ocean. Environ. Microbiol. Rep. 2016, 8, 305–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Motegi, C.; Yokokawa, T.; Nagata, T. Large-scale distribution patterns of virioplankton in the upper ocean. Aquat. Microb. Ecol. 2010, 60, 233–246. [Google Scholar] [CrossRef]
- Brum, J.R.; Hurwitz, B.L.; Schofield, O.; Ducklow, H.W.; Sullivan, M.B. Seasonal time bombs: Dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2017, 11, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roux, S.; Coordinators, T.O.; Brum, J.R.; Dutilh, B.E.; Sunagawa, S.; Duhaime, M.; Loy, A.; Poulos, B.T.; Solonenko, N.; Lara, E.; et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016, 537, 689–693. [Google Scholar] [CrossRef] [Green Version]
- Hurwitz, B.L.; Sullivan, M.B. The Pacific Ocean Virome (POV): A Marine Viral Metagenomic Dataset and Associated Protein Clusters for Quantitative Viral Ecology. PLoS ONE 2013, 8, e57355. [Google Scholar] [CrossRef]
- Duarte, C.M. Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition. Limnol. Oceanogr. Bull. 2015, 24, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Walker, P.J.; Siddell, S.G.; Lefkowitz, E.J.; Mushegian, A.R.; Adriaenssens, E.M.; Dempsey, D.M.; Dutilh, B.E.; Harrach, B.; Harrison, R.L.; Hendrickson, R.C.; et al. Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses (2020). Arch. Virol. 2020, 165, 2737–2748. [Google Scholar] [CrossRef]
- Suttle, C.; Chan, A.M.; Cottrell, M.T. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 1990, 347, 467–469. [Google Scholar] [CrossRef]
- King, A.; Adams, M.; Carstens, E.; Lefkowitz, E. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Paul, J.H.; Sullivan, M.B. Marine phage genomics: What have we learned? Curr. Opin. Biotechnol. 2005, 16, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Wichels, A.; Biel, S.S.; Gelderblom, H.R.; Brinkhoff, T.; Muyzer, G.; Schütt, C. Bacteriophage Diversity in the North Sea. Appl. Environ. Microbiol. 1998, 64, 4128–4133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, W.H.; Joint, I.R.; Carr, N.G.; Mann, N.H. Isolation and Molecular Characterization of Five Marine Cyanophages Propagated on Synechococcus sp. Strain WH7803. Appl. Environ. Microbiol. 1993, 59, 3736–3743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maness, H.T.; Nollens, H.H.; Jensen, E.D.; Goldstein, T.; LaMere, S.; Childress, A.; Sykes, J.; Leger, J.S.; Lacave, G.; Latson, F.E.; et al. Phylogenetic analysis of marine mammal herpesviruses. Vet. Microbiol. 2011, 149, 23–29. [Google Scholar] [CrossRef]
- Subbiah, J. Marine Viruses. In Springer Handbook of Marine Biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 35–49. [Google Scholar]
- Gangnonngiw, W.; Laisutisan, K.; Sriurairatana, S.; Senapin, S.; Chuchird, N.; Limsuwan, C.; Chaivisuthangkura, P.; Flegel, T.W. Monodon baculovirus (MBV) infects the freshwater prawn Macrobrachium rosenbergii cultivated in Thailand. Virus Res. 2010, 148, 24–30. [Google Scholar] [CrossRef]
- Kivela, H.M.; Mannisto, R.H.; Kalkkinen, N.; Bamford, D.H. Purification and protein composition of PM2, the first lipid-containing bacterial virus to be isolated. Virology 1999, 262, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Farley, C.A. Viruses and virus-like lesions in marine molluscs. Mar. Fish. Rev. 1978, 40, 18–20. [Google Scholar]
- Claverie, J.-M.; Grzela, R.; Lartigue, A.; Bernadac, A.; Nitsche, S.; Vacelet, J.; Ogata, H.; Abergel, C. Mimivirus and Mimiviridae: Giant viruses with an increasing number of potential hosts, including corals and sponges. J. Invertebr. Pathol. 2009, 101, 172–180. [Google Scholar] [CrossRef]
- Chakrabarty, U.; Dutta, S.; Mallik, A.; Mondal, D.; Mandal, N. Identification and characterization of microsatellite DNA markers in order to recognise the WSSV susceptible populations of marine giant black tiger shrimp, Penaeus monodon. Vet. Res. 2015, 46, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Rector, A.; Stevens, H.; Lacave, G.; Lemey, P.; Mostmans, S.; Salbany, A.; Vos, M.; Van, D.K.; Ghim, S.J.; Rehtanz, M. Genomic characterization of novel dolphin papillomaviruses provides indications for recombination within the Papillomaviridae. Virology 2008, 378, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Kapp, M. Viruses infecting marine brown algae. Virus Genes 1998, 16, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Abrescia, N.G.; Cockburn, J.J.; Grimes, J.M.; Sutton, G.C.; Diprose, J.M.; Butcher, S.J.; Fuller, S.D.; Martín, C.S.; Burnett, R.M.; Stuart, D.I. Insights into assembly from structural analysis of bacteriophage PRD1. Nature 2004, 432, 68–74. [Google Scholar] [CrossRef]
- Benson, S.D.; Bamford, J.K.H.; Bamford, D.H.; Burnett, R.M. Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 1999, 98, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Garseth, Å.; Biering, E.; Tengs, T. Piscine myocarditis virus (PMCV) in wild Atlantic salmon Salmo salar. Dis. Aquat. Org. 2012, 102, 157–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, P.T. Viral diseases of marine invertebrates. Helgol. Mar. Res. 1984, 37, 65–98. [Google Scholar] [CrossRef] [Green Version]
- Dietzgen, R.G.; Kondo, H.; Goodin, M.M.; Kurath, G.; Vasilakis, N. The family Rhabdoviridae: Mono- and bipartite negative-sense RNA viruses with diverse genome organization and common evolutionary origins. Virus Res. 2017, 227, 158–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bressem, M.-F.; Raga, J.A. Viruses of cetaceans. In Studies in Viral Ecology: Animal Host Systems; Wiley-Blackwell: Hoboken, NJ, USA, 2011; Volume 2, pp. 309–332. [Google Scholar]
- Schütze, H. Coronaviruses in Aquatic Organisms. Aquac. Virol. 2016, 327–335. [Google Scholar] [CrossRef]
- Woo, P.C.Y.; Lau, S.K.P.; Lam, C.S.F.; Tsang, A.K.L.; Hui, S.-W.; Fan, R.Y.Y.; Martelli, P.; Yuen, K.-Y. Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus. J. Virol. 2014, 88, 1318–1331. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, A.; Victoria, J.; Simmonds, P.; Wang, C.; Shafer, R.W.; Nims, R.; Nielsen, O.; Delwart, E. A Highly Divergent Picornavirus in a Marine Mammal. J. Virol. 2008, 82, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Lang, A.S.; Culley, A.I.; Suttle, C. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology 2004, 320, 206–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotz, J.M.; Overstreet, R.M.; Grimes, D.J. Aquaculture and Animal Pathogens in the Marine Environment with Emphasis on Marine Shrimp Viruses. In Oceans and Health: Pathogens in the Marine Environment; Springer: Boston, MA, USA, 2006; pp. 431–451. [Google Scholar]
- Schaffer, F.L.; Bachrach, H.L.; Brown, F.; Gillespie, J.H.; Burroughs, N.; Madin, S.H.; Madeley, R.; Povey, C.; Scott, F.; Smith, A.W.; et al. Caliciviridae. Intervirology 1980, 14, 1–6. [Google Scholar] [CrossRef]
- Greninger, A.L.; DeRisi, J.L. Draft Genome Sequences of Leviviridae RNA Phages EC and MB Recovered from San Francisco Wastewater. Genome Announc. 2015, 3, e00652-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryson, S.J.; Thurber, A.R.; Correa, A.M.S.; Orphan, V.; Thurber, R.V. A novel sister clade to the enterobacteria microviruses (family Microviridae) identified in methane seep sediments. Environ. Microbiol. 2015, 17, 3708–3721. [Google Scholar] [CrossRef]
- Nishizawa, T.; Mori, K.; Furuhashi, M.; Nakai, T.; Furusawa, I.; Muroga, K. Comparison of the coat protein genes of five fish noda-viruses, the causative agents of viral nervous necrosis in marine fish. J. Gen. Virol. 1995, 63, 1563–1569. [Google Scholar] [CrossRef]
- Cipriano, R.C. Infectious Salmon Anemia Virus; Alphascript Publishing: Lewisburg, PA, USA, 2002. [Google Scholar]
- Bonami, J.R.; Lightner, D.V.; Redman, R.M.; Poulos, B.T. Partial characterization of a togavirus (LOVV) associated with histopathological changes of the lymphoid organ of penaeid shrimp. Dis. Aquat. Org. 1992, 14, 145–152. [Google Scholar] [CrossRef]
- Attoui, H.; Jaafar, F.M.; Belhouchet, M.; De Micco, P.; De Lamballerie, X.; Brussaard, C.P.D. Micromonas pusilla reovirus: A new member of the family Reoviridae assigned to a novel proposed genus (Mimoreovirus). J. Gen. Virol. 2006, 87, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Brussaard, C.; Noordeloos, A.; Sandaa, R.-A.; Heldal, M.; Bratbak, G. Discovery of a dsRNA virus infecting the marine photosynthetic protist Micromonas pusilla. Virology 2004, 319, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Montanié, H.; Bossy, J.-P.; Bonami, J.-R. Morphological and genomic characterization of two reoviruses (P and W2) pathogenic for marine crustaceans; do they constitute a novel genus of the Reoviridae family? J. Gen. Virol. 1993, 74, 1555–1561. [Google Scholar] [CrossRef]
- Hosono, N.; Suzuki, S.; Kusuda, R. Genogrouping of birnaviruses isolated from marine fish: A comparison of VP2/NS junction regions on genome segment A. J. Fish Dis. 1996, 19, 295–302. [Google Scholar] [CrossRef]
- Munn, C.B. Viruses as pathogens of marine organisms—From bacteria to whales. J. Mar. Biol. Assoc. U. K. 2006, 86, 453–467. [Google Scholar] [CrossRef]
- Poulos, B.T.; Lightner, D.V. Detection of infectious myonecrosis virus (IMNV) of penaeid shrimp by reverse-transcriptase polymerase chain reaction (RT-PCR). Dis. Aquat. Organ. 2006, 73, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.S.; Rise, M.L.; Culley, A.I.; Steward, G. RNA viruses in the sea. FEMS Microbiol. Rev. 2009, 33, 295–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Rimet, F.; Jacquet, S. Seasonal variations in PCR-DGGE fingerprinted viruses infecting phytoplankton in large and deep peri-alpine lakes. Ecol. Res. 2014, 29, 271–287. [Google Scholar] [CrossRef]
- Wilson, W.H.; Fuller, N.J.; Joint, I.R.; Mann, N.H. Analysis of cyanophage diversity in the marine environment using denaturing gradient gel electrophoresis. In Microbial Biosystems: New Frontier, Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, NS, Canada, 9–14 August 1998; Bell, C.R., Brylinsky, M., Johnson-Green, P., Eds.; Atlantic Canada Society for Microbial Ecology: Kentville, NS, Canada, 2000; pp. 565–570. [Google Scholar]
- Frederickson, C.M.; Short, S.M.; Suttle, C.A. The Physical Environment Affects Cyanophage Communities in British Columbia Inlets. Microb. Ecol. 2003, 46, 348–357. [Google Scholar] [CrossRef]
- Sandaa, R.-A.; Larsen, A. Seasonal variations in virus-host populations in Norwegian coastal waters: Focusing on the cyanophage community infecting marine Synechococcus spp. Appl. Environ. Microbiol. 2006, 72, 4610–4618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, S.M.; Suttle, C.A. Sequence Analysis of Marine Virus Communities Reveals that Groups of Related Algal Viruses Are Widely Distributed in Nature. Appl. Environ. Microbiol. 2002, 68, 1290–1296. [Google Scholar] [CrossRef] [Green Version]
- Short, S.; Suttle, C. Temporal dynamics of natural communities of marine algal viruses and eukaryotes. Aquat. Microb. Ecol. 2003, 32, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, D.C.; Oke, J.; Hall, M.; Malin, G.; Wilson, W.H. Virus succession observed during an Emiliana huxleyi bloom. Appl. Environ. Microbiol. 2003, 69, 2484–2490. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Martínez, J.; Schroeder, D.C.; Larsen, A.; Bratbak, G.; Wilson, W.H. Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies. Appl. Environ. Microbiol. 2007, 73, 554–562. [Google Scholar] [CrossRef] [Green Version]
- Parvathi, A.; Zhong, X.; Jacquet, S. Dynamics of various viral groups infecting autotrophic plankton in Lake Geneva. Adv. Oceanogr. Limnol. 2012, 3, 171–191. [Google Scholar] [CrossRef]
- Luo, E.; Eppley, J.M.; Romano, A.E.; Mende, D.R.; Delong, E.F. Double-stranded DNA virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 2020, 14, 1304–1315. [Google Scholar] [CrossRef] [PubMed]
- Brüssow, H.; Hendrix, R.W. Phage Genomics: Small Is Beautiful. Cell 2002, 108, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Thurber, R.L.V.; Correa, A.M. Viruses of reef-building scleractinian corals. J. Exp. Mar. Biol. Ecol. 2011, 408, 102–113. [Google Scholar] [CrossRef]
- Paul, J.H.; Rose, J.B.; Jiang, S.C.; Kellogg, C.A.; Dickson, L. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appl. Environ. Microbiol. 1993, 59, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.H.; Dale, A.L.; Davy, J.E.; Davy, S. An enemy within? Observations of virus-like particles in reef corals. Coral Reefs 2004, 24, 145–148. [Google Scholar] [CrossRef]
- Davy, J.; Patten, N. Morphological diversity of virus-like particles within the surface microlayer of scleractinian corals. Aquat. Microb. Ecol. 2007, 47, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Weynberg, K.D.; Wood-Charlson, E.M.; Suttle, C.A.; Van Oppen, M.J.H. Generating viral metagenomes from the coral holobiont. Front. Microbiol. 2014, 5, 206. [Google Scholar] [CrossRef] [Green Version]
- Correa, A.M.S.; Welsh, R.M.; Thurber, R.L.V. Unique nucleocytoplasmic dsDNA and +ssRNA viruses are associated with the dinoflagellate endosymbionts of corals. ISME J. 2012, 7, 13–27. [Google Scholar] [CrossRef]
- Buerger, P.; Van Oppen, M.J. Viruses in corals: Hidden drivers of coral bleaching and disease? Microbiol. Aust. 2018, 39, 9. [Google Scholar] [CrossRef] [Green Version]
- Lohr, J.; Munn, C.B.; Wilson, W.H. Characterization of a Latent Virus-Like Infection of Symbiotic Zooxanthellae. Appl. Environ. Microbiol. 2007, 73, 2976–2981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cmfauquet, C.; Fargette, D. International Committee on Taxonomy of Viruses and the 3142 unassigned species. Virol. J. 2005, 2, 1–10. [Google Scholar] [CrossRef]
- Wegley, L.; Edwards, R.; Rodriguez-Brito, B.; Liu, H.; Rohwer, F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 2007, 9, 2707–2719. [Google Scholar] [CrossRef] [PubMed]
- Tomaru, Y.; Katanozaka, N.; Nishida, K.; Shirai, Y.; Tarutani, K.; Yamaguchi, M.; Nagasaki, K. Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalga Heterocapsa circularisquama. Aquat. Microb. Ecol. 2004, 34, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Houldcroft, C.J.; Breuer, J. Tales from the crypt and coral reef: The successes and challenges of identifying new herpesviruses using metagenomics. Front. Microbiol. 2015, 6, 188. [Google Scholar] [CrossRef]
- Marhaver, K.L.; Edwards, R.A.; Rohwer, F. Viral communities associated with healthy and bleaching corals. Environ. Microbiol. 2008, 10, 2277–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bracht, A.J.; Brudek, R.L.; Ewing, R.Y.; Manire, C.A.; Burek, K.A.; Rosa, C.; Beckmen, K.B.; Maruniak, J.E.; Romero, C.H. Genetic identification of novel poxviruses of cetaceans and pinnipeds. Arch. Virol. 2005, 151, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Weynberg, K.D.; Laffy, P.W.; Wood-Charlson, E.M.; Turaev, D.; Rattei, T.; Webster, N.; Van Oppen, M.J. Coral-associated viral communities show high levels of diversity and host auxiliary functions. PeerJ 2017, 5, e4054. [Google Scholar] [CrossRef]
- Cárdenas, A.; Ye, J.; Ziegler, M.; Payet, J.P.; McMinds, R.; Thurber, R.V.; Voolstra, C.R. Coral-Associated Viral Assemblages From the Central Red Sea Align With Host Species and Contribute to Holobiont Genetic Diversity. Front. Microbiol. 2020, 11, 572534. [Google Scholar] [CrossRef]
- Thurber, R.L.V.; Barott, K.L.; Hall, D.; Liu, H.; Rodriguez-Mueller, B.; Desnues, C.; Edwards, R.A.; Haynes, M.; Angly, F.E.; Wegley, L.; et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl. Acad. Sci. USA 2008, 105, 18413–18418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, S.; Davy, J.E.; Wilson, W.H.; Hoegh-Guldberg, O.; Davy, S.K. Porites white patch syndrome: Associated viruses and disease physiology. Coral Reefs 2014, 34, 249–257. [Google Scholar] [CrossRef]
- Benites, L.F.; Silva-Lima, A.W.; Da Silva-Neto, I.D.; Salomon, P.S. Megaviridae-like particles associated with Symbiodinium spp. from the endemic coral Mussismilia braziliensis. Symbiosis 2018, 76, 303–311. [Google Scholar] [CrossRef]
- Brüwer, J.D.; Agrawal, S.; Liew, Y.J.; Aranda, M.; Voolstra, C.R. Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol. 2017, 17, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Montalvo-Proaño, J.; Buerger, P.; Weynberg, K.; Van Oppen, M.J.H. A PCR-Based Assay Targeting the Major Capsid Protein Gene of a Dinorna-Like ssRNA Virus That Infects Coral Photosymbionts. Front. Microbiol. 2017, 8, 1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messyasz, A.; Rosales, S.M.; Mueller, R.S.; Sawyer, T.; Correa, A.M.S.; Thurber, A.R.; Thurber, R.V. Coral Bleaching Phenotypes Associated With Differential Abundances of Nucleocytoplasmic Large DNA Viruses. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Futch, J.C.; Griffin, D.W.; Lipp, E.K. Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys. Environ. Microbiol. 2010, 12, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Clerissi, C.; Grimsley, N.; Ogata, H.; Hingamp, P.; Poulain, J.; Desdevises, Y. Unveiling of the Diversity of Prasinoviruses (Phycodnaviridae) in Marine Samples by Using High-Throughput Sequencing Analyses of PCR-Amplified DNA Polymerase and Major Capsid Protein Genes. Appl. Environ. Microbiol. 2014, 80, 3150–3160. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.H.; Van Etten, J.L.; Allen, M.J. The Phycodnaviridae: The Story of How Tiny Giants Rule the World. Curr. Top. Microbiol. Immunol. 2009, 328, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Dinsdale, E.A.; Pantos, O.; Smriga, S.; Edwards, R.A.; Angly, F.; Wegley, L.; Hatay, M.; Hall, D.; Brown, E.; Haynes, M.; et al. Microbial Ecology of Four Coral Atolls in the Northern Line Islands. PLoS ONE 2008, 3, e1584. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shantz, A.A.; Payet, J.P.; Sharpton, T.J.; Foster, A.; Burkepile, D.E.; Thurber, R.V. Corals and Their Microbiomes Are Differentially Affected by Exposure to Elevated Nutrients and a Natural Thermal Anomaly. Front. Mar. Sci. 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Weil, E.; Smith, G.; Gil-Agudelo, D.L. Status and progress in coral reef disease research. Dis. Aquat. Org. 2006, 69, 1–7. [Google Scholar] [CrossRef]
- Rotjan, R.D.; Lewis, S.M. Selective predation by parrotfishes on the reef coral Porites astreoides. Mar. Ecol. Prog. Ser. 2005, 305, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Rotjan, R.D.; Lewis, S.M. Impact of coral predators on tropical reefs. Mar. Ecol. Prog. Ser. 2008, 367, 73–91. [Google Scholar] [CrossRef]
- Sutherland, K.P.; Porter, J.; Torres, C. Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar. Ecol. Prog. Ser. 2004, 266, 273–302. [Google Scholar] [CrossRef] [Green Version]
- Bettarel, Y.; Halary, S.; Auguet, J.-C.; Mai, T.C.; Van Bui, N.; Bouvier, T.; Got, P.; Bouvier, C.; Monteil-Bouchard, S.; Christelle, D. Corallivory and the microbial debacle in two branching scleractinians. ISME J. 2018, 12, 1109–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeby, G.; Santavy, D. Factors affecting susceptibility of the coral Montastraea faveolata to black-band disease. Mar. Ecol. Prog. Ser. 2006, 318, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.A.; Strand, M.R.; Dickey, S.E.; Beck, M.H.; Hilgarth, R.S.; Barney, W.E.; Kadash, K.; Kroemer, J.A.; Lindstrom, K.G.; Rattanadechakul, W.; et al. Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 2006, 347, 160–174. [Google Scholar] [CrossRef] [Green Version]
- Herniou, E.A.; Olszewski, J.A.; O’Reilly, D.R.; Cory, J.S. Ancient Coevolution of Baculoviruses and Their Insect Hosts. J. Virol. 2004, 78, 3244–3251. [Google Scholar] [CrossRef] [Green Version]
- Cherif, N.C.; Fatma, A.; Kaouther, M.; Sami, Z. Case Report: First occurrence of Lymphocystis disease virus 3 (LCDV-Sa) in Wild Marine Fish in Tunisia. Ann. Mar. Sci. 2020, 4, 024–029. [Google Scholar] [CrossRef]
- Xu, L.; Feng, J.; Huang, Y. Identification of lymphocystis disease virus from paradise fish Macropodus opercularis (LCDVPF). Arch. Virol. 2014, 159, 2445–2449. [Google Scholar] [CrossRef]
- Huang, X.; Huang, Y.; Xu, L.; Wei, S.; Ouyang, Z.; Feng, J.; Qin, Q. Identification and characterization of a novel lymphocystis disease virus isolate from cultured grouper in China. J. Fish Dis. 2014, 38, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.; Song, J.Y.; Kitamura, S.I.; Jung, S.J.; Oh, M.J. Phylogenetic analysis of lymphocystis disease virusfrom tropical ornamental fish species based on a major capsidprotein gene. J. Fish Dis. 2008, 31, 473–479. [Google Scholar] [CrossRef]
- Tidona, C.; Darai, G. The Complete DNA Sequence of Lymphocystis Disease Virus. Virology 1997, 230, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, T.; Barbosa-Solomieu, V.; Chinchar, V.G. A Decade of Advances in Iridovirus Research. Adv. Appl. Microbiol. 2005, 65, 173–248. [Google Scholar] [CrossRef]
- Stoskopf, M.K. Fish Medicine; W. B. Saunders Co.: Philadelphia, LA, USA, 1993; 882p. [Google Scholar]
- Christmas, J.Y.; Rouse, H.D. The occurrence of lymphocystis in Micropogon undulatus and Cynoscion arenarius from Mississippi estuaries. Gulf Res. Rep. 1970, 3, 131–154. [Google Scholar] [CrossRef] [Green Version]
- Bowden, R.A.; Oestmann, D.J.; Lewis, D.H.; Frey, M.S. Lymphocystis in Red Drum. J. Aquat. Anim. Health 1995, 7, 231–235. [Google Scholar] [CrossRef]
- Lam, C.; Khairunissa, I.; Damayanti, L.; Kurobe, T.; Teh, S.J.; Pfahl, H.; Rapi, S.; Janetski, N.; Baxa, D.V. Detection of a new strain of lymphocystis disease virus (LCDV) in captive-bred clownfish Amphiprion percula in South Sulawesi, Indonesia. Aquac. Int. 2020, 28, 2121–2137. [Google Scholar] [CrossRef]
- López-Bueno, A.; Mavian, C.; Labella, A.M.; Castro, D.; Borrego, J.J.; Alcami, A.; Alejo, A. Concurrence of Iridovirus, Polyomavirus, and a Unique Member of a New Group of Fish Papillomaviruses in Lymphocystis Disease-Affected Gilthead Sea Bream. J. Virol. 2016, 90, 8768–8779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvitt, H.; Heinisch, G.; Diamant, A. Detection and phylogeny of Lymphocystivirus in sea bream Sparus aurata based on the DNA polymerase gene and major capsid protein sequences. Aquaculture 2008, 275, 58–63. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Xiao, F.; Xie, J.; Li, Z.-Q.; Gui, J.-F. Complete Genome Sequence of Lymphocystis Disease Virus Isolated from China. J. Virol. 2004, 78, 6982–6994. [Google Scholar] [CrossRef] [Green Version]
- Hanson, L.A.; Rudis, M.R.; Vasquez-Lee, M.; Montgomery, R.D. A broadly applicable method to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene. Virol. J. 2006, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Kravtsova, L.S.; Izhboldina, L.A.; Khanaev, I.V.; Pomazkina, G.V.; Rodionova, E.V.; Domysheva, V.M.; Sakirko, M.V.; Tomberg, I.V.; Kostornova, T.Y.; Kravchenko, O.S.; et al. Nearshore benthic blooms of filamentous green algae in Lake Baikal. J. Great Lakes Res. 2014, 40, 441–448. [Google Scholar] [CrossRef]
- Timoshkin, O.; Samsonov, D.; Yamamuro, M.; Moore, M.; Belykh, O.; Malnik, V.; Sakirko, M.; Shirokaya, A.; Bondarenko, N.; Domysheva, V.; et al. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world’s greatest freshwater biodiversity in danger? J. Great Lakes Res. 2016, 42, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Kamalakkannan, P. Marine sponges a good source of bioactive compounds in anticancer agents. Int. J. Pharm. Sci. Rev. Res. 2015, 31, 132–135. [Google Scholar]
- Karuppiah, V.; Li, Z. Marine Sponge Metagenomics. In Springer Handbook of Marine Biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 457–473. [Google Scholar]
- Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge associated microorganisms: Evolution, ecology and biotechnological potentials. Microbiol. Mol. Biol. Rev. 2007, 71, 295–347. [Google Scholar] [CrossRef] [Green Version]
- Hellio, C.; Maréchal, J.P.; Gama, B.P.D. Natural marine products with antifouling activities. In Advances in Marine Antifouling Coatings and Technologies; Hellio, C., Yebra, D., Eds.; Woodhead Publishers: Sawston, UK, 2009; pp. 572–622. [Google Scholar] [CrossRef]
- Webster, N.; Taylor, M.W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 2011, 14, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Pita, L.; Rix, L.; Slaby, B.M.; Franke, A.; Hentschel, U. The sponge holobiont in a changing ocean: From microbes to ecosystems. Microbiome 2018, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Moitinho-Silva, L.; Lurgi, M.; Björk, J.R.; Easson, C.; Astudillo-García, C.; Olson, J.B.; Erwin, P.M.; López-Legentil, S.; Luter, H.; et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 2016, 7, 11870. [Google Scholar] [CrossRef] [Green Version]
- Lesser, M.P.; Fiore, C.; Slattery, M.; Zaneveld, J. Climate change stressors destabilize the microbiome of the Caribbean barrel sponge, Xestospongia muta. J. Exp. Mar. Biol. Ecol. 2016, 475, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Bourne, D.G.; Morrow, K.M.; Webster, N.S. Coral Holobionts: Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 2016, 70, 317–340. [Google Scholar] [CrossRef]
- Easson, C.G.; Matterson, K.O.; Freeman, C.J.; Archer, S.K.; Thacker, R.W. Variation in species diversity and functional traits of sponge communities near human populations in Bocas del Toro, Panama. PeerJ 2015, 3, e1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, D.T.; Genuário, D.B.; Silva, F.S.P.; Pansa, C.C.; Kavamura, V.N.; Moraes, F.C.; Melo, I.S. Analysis of bacterial composition in marine sponges reveals the influence of host phylogeny and environment. FEMS Microbiol. Ecol. 2017, 93, fiw204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, L.; Liu, M.; Simister, R.; Webster, N.; Thomas, T. Marine microbial symbiosis heats up: The phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 2013, 7, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Proctor, L.M.; Okubo, A.; Fuhrman, J.A. Calibrating estimates of phage-induced mortality in marine bacteria: Ultrastructural studies of marine bacteriophage development from one-step growth experiments. Microb. Ecol. 1993, 25, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Hadas, H.; Einav, M.; Fishov, I.; Zaritsky, A. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 1997, 143, 179–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danovaro, R.; Corinaldesi, C.; Dell’Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A. Marine viruses and global climate change. FEMS Microbiol. Rev. 2011, 35, 993. [Google Scholar] [CrossRef]
- Borchiellini, C.; Manuel, M.; Alivon, E.; Boury-Esnault, N.; Vacelet, J.; Le Parco, Y. Sponge paraphyly and the origin of Metazoa. J. Evol. Biol. 2001, 14, 171–179. [Google Scholar] [CrossRef]
- Simion, P.; Philippe, H.; Baurain, D.; Jager, M.; Richter, D.J.; Di Franco, A.; Roure, B.; Satoh, N.; Quéinnec, É.; Ereskovsky, A.; et al. A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Curr. Biol. 2017, 27, 958–967. [Google Scholar] [CrossRef] [Green Version]
- Butina, T.V.; Potapov, S.A.; Belykh, O.; Belikov, S. Genetic diversity of cyanophages of the myoviridae family as a constituent of the associated community of the Baikal sponge Lubomirskia baicalensis. Russ. J. Genet. 2015, 51, 313–317. [Google Scholar] [CrossRef]
- Pascelli, C.; Laffy, P.W.; Kupresanin, M.; Ravasi, T.; Webster, N.S. Morphological characterization of virus-like particles in coral reef sponges. PeerJ 2018, 6, e5625. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Reynolds, D.; Liu, M.; Stark, M.; Kjelleberg, S.; Webster, N.; Thomas, T.; Fan, L.; Reynolds, D.; Liu, M.; et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc. Natl. Acad. Sci. USA 2012, 109, E1878–E1887. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.H. Prophages in marine bacteria: Dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008, 2, 579–589. [Google Scholar] [CrossRef]
- Butina, T.V.; Bukin, Y.S.; Khanaev, I.V.; Kravtsova, L.S.; Maikova, O.O.; Tupikin, A.E.; Kabilov, M.R.; Belikov, S.I. Metagenomic analysis of viral communities in diseased Baikal sponge Lubomirskia baikalensis. Limnol. Freshw. Biol. 2019, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Batista, D.; Costa, R.; Carvalho, A.P.; Batista, W.R.; Rua, C.P.; de Oliveira, L.; Leomil, L.; Fróes, A.M.; Thompson, F.L.; Coutinho, R.; et al. Environmental conditions affect activity and associated microorganisms of marine sponges. Mar. Environ. Res. 2018, 142, 59–68. [Google Scholar] [CrossRef]
- Laffy, P.W.; Wood-Charlson, E.M.; Turaev, D.; Weynberg, K.; Botté, E.S.; Van Oppen, M.J.H.; Webster, N.; Rattei, T. HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts. Front. Microbiol. 2016, 7, 822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butina, T.V.; Khanaev, I.V.; Kravtsova, L.S.; Maikova, O.O.; Bukin, Y.S. Metavirome datasets from two endemic Baikal sponges Baikalospongia bacillifera. Data Brief 2020, 29, 105260. [Google Scholar] [CrossRef] [PubMed]
- Potapov, S.; Belykh, O.; Krasnopeev, A.; Galachyants, A.; Podlesnaya, G.; Khanaev, I.; Tikhonova, I. Diversity and biogeography of bacteriophages in biofilms of Lake Baikal based on g23 sequences. J. Great Lakes Res. 2020, 46, 4–11. [Google Scholar] [CrossRef]
- Steward, G.F.; Culley, A.I.; Mueller, J.A.; Wood-Charlson, E.M.; Belcaid, M.; Poisson, G. Are we missing half of the viruses in the ocean? ISME J. 2013, 7, 672–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culley, A.I.; Mueller, J.A.; Belcaid, M.; Wood-Charlson, E.M.; Poisson, G.; Steward, G. The Characterization of RNA Viruses in Tropical Seawater Using Targeted PCR and Metagenomics. mBio 2014, 5, e01210-14. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, T.; Orsi, W.D.; Jorgensen, B.B. Viral activities and life cycles in deep subseafloor sediments. Environ. Microbiol. Rep. 2015, 7, 868–873. [Google Scholar] [CrossRef]
- Shi, M.; Lin, X.-D.; Tian, J.-H.; Chen, L.-J.; Chen, X.; Li, C.-X.; Qin, X.-C.; Li, J.; Cao, J.-P.; Eden, J.-S.; et al. Redefining the invertebrate RNA virosphere. Nature 2016, 540, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Lin, X.-D.; Chen, X.; Tian, J.-H.; Chen, L.-J.; Li, K.; Wang, W.; Eden, J.-S.; Shen, J.-J.; Liu, L.; et al. The evolutionary history of vertebrate RNA viruses. Nature 2018, 556, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Sakai, C.; Thomas, C.E.; Nunoura, T.; Urayama, S.-I. A new member of the family Totiviridae associated with arboreal ants (Camponotus nipponicus). Arch. Virol. 2016, 161, 2043–2045. [Google Scholar] [CrossRef] [PubMed]
- Urayama, S.-I.; Takaki, Y.; Nunoura, T. FLDS: A Comprehensive dsRNA Sequencing Method for Intracellular RNA Virus Surveillance. Microbes Environ. 2016, 31, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urayama, S.-I.; Takaki, Y.; Nunoura, T.; Miyamoto, N. Complete Genome Sequence of a Novel RNA Virus Identified from a Deep-Sea Animal, Osedax japonicus. Microbes Environ. 2018, 33, 446–449. [Google Scholar] [CrossRef] [Green Version]
- Waldron, F.M.; Stone, G.N.; Obbard, D.J. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet. 2018, 14, e1007533. [Google Scholar] [CrossRef] [Green Version]
- Urayama, S.-I.; Takaki, Y.; Hagiwara, D.; Nunoura, T. dsRNA-seq Reveals Novel RNA Virus and Virus-Like Putative Complete Genome Sequences from Hymeniacidon sp. Sponge. Microbes Environ. 2020, 35, ME19132. [Google Scholar] [CrossRef] [Green Version]
- Wilson, W.H.; Francis, I.; Ryan, K.; Davy, S.K. Temperature induction of viruses in symbiotic dinoflagellates. Aquat. Microb. Ecol. 2001, 25, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Cesarman, E.; Pessin, M.; Lee, F.; Culpepper, J.; Knowles, D.; Moore, P. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994, 266, 1865–1869. [Google Scholar] [CrossRef] [Green Version]
- Teifke, J.P.; Löhr, C.V.; Marschang, R.E.; Osterrieder, N.; Posthaus, H. Detection of chelonid herpesvirus DNA by nonradio-active in situ hybridization in tissues from tortoises suffering from stomatitis-rhinitis complex in Europe and North America. Vet. Pathol. 2000, 37, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Gouda, I.; Nada, O.; Ezzat, S.; Eldaly, M.; Loffredo, C.; Taylor, C.; Abdel-Hamid, M. Immunohistochemical Detection of Hepatitis C Virus (Genotype 4) in B-cell NHL in an Egyptian Population. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivaraman, D.; Yeh, H.-Y.; Mulchandani, A.; Yates, M.V.; Chen, W. Use of Flow Cytometry for Rapid, Quantitative Detection of Poliovirus-Infected Cells via TAT Peptide-Delivered Molecular Beacons. Appl. Environ. Microbiol. 2013, 79, 696–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marston, D.A.; McElhinney, L.M.; Ellis, R.J.; Horton, D.L.; Wise, E.L.; Leech, S.L.; David, D.; De Lamballerie, X.; Fooks, A.R. Next generation sequencing of viral RNA genomes. BMC Genom. 2013, 14, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monier, A.; Larsen, J.B.; Sandaa, R.-A.; Bratbak, G.; Claverie, J.-M.; Ogata, H. Marine mimivirus relatives are probably large algal viruses. Virol. J. 2008, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, F.J.; Wood-Charlson, E.M.; Van Oppen, M.J.; Bourne, D.G.; Willis, B.L.; Weynberg, K. Abundance and morphology of virus-like particles associated with the coral Acropora hyacinthus differ between healthy and white syndrome-infected states. Mar. Ecol. Prog. Ser. 2014, 510, 39–43. [Google Scholar] [CrossRef]
- Lawrence, S.; Wilson, W.H.; Davy, J.E.; Davy, S.K. Latent virus-like infections are present in a diverse range of Symbiodinium spp. (Dinophyta). J. Phycol. 2014, 50, 984–997. [Google Scholar] [CrossRef]
- Mokili, J.L.; Rohwer, F.; Dutilh, B.E. Metagenomics and future perspectives in virus discovery. Curr. Opin. Virol. 2012, 2, 63–77. [Google Scholar] [CrossRef]
Virus Genome | Order | Family | Morphology | Size (nmin Diameter) | Host Species | References |
---|---|---|---|---|---|---|
Double stranded DNA (dsDNA) | Caudovirales | Myoviridae | Polygonal head (icosahedral) with contractile tail (helical) | 50–110 | Bacteria | [79,80,81] |
Caudovirales | Podoviridae | Icosahedral | 130–200 | Bacteria | ||
Caudovirales | Siphoviridae | Icosahedral with noncontractile tail | 60 | Bacteria | ||
Herpesvirales | Herpesviridae | Pleomorphic, icosahedral, enveloped | 150–200 | Fish, corals, mammals, mollusks, and bivalve | [82] | |
Ligamenvirales | Lipothrixviridae | Thick rod with lipid coat | 400 | Archaea | [83] | |
Unassigned | Baculoviridae | Enveloped rods, some with tails | 65– 100 × 230– 335 | Crustaceans | [84] | |
Unassigned | Corticoviridae | Icosahedral with spike | 60–75 | Bacteria | [85] | |
Unassigned | Iridoviridae | Round, icosahedral | 190–200 | Fish, Mollusks | [86] | |
Unassigned | Mimiviridae | Icosahedral with microtubule-like projections | 650 | Marine fish | [87] | |
Unassigned | Nimaviridae | Enveloped, ovoid with tail-like appendage | 275 | Marine crustaceans | [88] | |
Unassigned | Papillomaviridae | Round, icosahedral | 40–50 | [89] | ||
Unassigned | Phycodnaviridae | Pleomorphic, icosahedral, enveloped | 130–200 | Algae | [90] | |
Unassigned | Tectiviridae | Icosahedral, with noncontractile tail | 60 | Bacteria | [91,92] | |
Unassigned | Totiviridae | Round, icosahedral | 30–45 | Protist | [93] | |
Anelloviridae | icosahedral, circular | 30 | Vertebrates | |||
Circoviridae | icosahedral, circular | 12–27 | Vertebrates | |||
Geminiviridae | icosahedral | 22 × 38 | Protozoa | |||
Single stranded DNA (ssDNA) | Unassigned | Inoviridae | Genus Inoviruses: filamentous; plectroviruses: rod-shaped | inoviruses: 7 × 700–3500; plectroviruses: 15 × 200–400 | Bacteria | [78] |
Unassigned | Microviridae | icosahedral | 25–27 | Bacteria | ||
Unassigned | Nanoviridae | icosahedral | 18–20 | Protozoa | ||
Unassigned | Parvoviridae | icosahedral, linear segment | 21–26 | Vertebrates, invertebrates | ||
Bunyavirales | Peribunyaviridae | Round, enveloped | 80–120 | Crustaceans | [94] | |
Mononegavirales | Paramyxoviridae | Various, mainly enveloped, | 60–300 × 1000 | Mammals | [95] | |
Rhabdoviridae | Bullet-shaped with projections | 45–100 × 100–430 | Fish | [96] | ||
Single stranded RNA (ssRNA) | Nidovirales | Coronaviridae | Rod-shaped with projections | 200 × 42 | Crustaceans, fish, seabirds | [97,98] |
Dicistroviridae | Round, icosahedral | 30 | Crustaceans | |||
Picornavirales | Marnaviridae | Round, icosahedral | 25 | Algae | [99,100,101] | |
Picornavirales | Picornaviridae | Round, icosahedral | 27–30 | Algae, crustaceans, thraustochytrids, mammals | ||
Unassigned | Caliciviridae | Round, icosahedral | 35–40 | Fish, mammals | [102] | |
Unassigned | Leviviridae | Round, icosahedral | 26 | Bacteria | [103] | |
Unassigned | Microviridae | Icosahedral with spikes | 25–27 | Bacteria | [104] | |
Unassigned | Nodaviridae | Round, icosahedral | 30 | Fish | [105] | |
Unassigned | Orthomyxoviridae | Round, with spikes | 80–120 | Fish, mammals, seabirds | [106] | |
Unassigned | Togaviridae | Round, with outer fringe | 66 | Fish | [107] | |
Unassigned | Reoviridae | Icosahedral, thick outer layers, smaller electron-dense inner cores | 90–95 | Algae | [108,109,110] | |
Double stranded RNA (dsRNA) | Unassigned | Birnaviridae | Round, icosahedral | 60 | Mollusks, fish | [111] |
Unassigned | Cystoviridae | Icosahedral with lipid coat | 60–75 | Bacteria | [112] | |
Unassigned | Totiviridae | Round, icosahedral | 30–45 | Protist, shrimp | [113,114] |
Virus Family | Size (nm in Diameter) | Host | Coral Species | Method of Detection | References |
---|---|---|---|---|---|
Closteroviridae | 12 | Marine algae | Unclassified | Analytical fluocytometry, Tranmission Electron Microscopy | [133] |
Flexiviridae, Potyviridae | 200 nm–2 um | Marine algae | Unclassified | Unclassified | [134] |
HaRNAV | 25 | Marine Algae | Montastraea cavernosa | Pyrosequencing | [131] |
Mimiviridae, Iridoviridae | 400, 120–350 | Marine algae | Porites asteroides | Metagenome | [135] |
HcRNAV | 30 | Marine algae | Unclassified | Transmission Electron Microscopy | [136] |
Geminiviridae, Nanoviridae, Tymoviridae, Potyviridae, Tombusviridae | 18–20, 30, 30, 11–20 28 | Protist, plants, invertebrate | Unclassified | Metagenome | [46] |
Herpesviridae | 120–150 | Terestial and aquatic animals | Montastraea annularis, Symbiodinium sp., Diploria strigosa | Transmission Electron Microscopy, Metagenome | [43,44,137,138] |
Poxviridae | 200 | Insects, terrestrial invertebrates (humans and birds), whales, sea lions, dolphins | Acropora tenuis, Fungia fungites, Goniastria aspera, Galaxea fascicularis, Pocillopora acuta, Pocillopora damiicomis, Pocillopora verrucosa | Transmission Electron Microscopy | [28,139,140] |
Mimiviridae, Retroviridae, Siphoviridae, Picobirnaviridae | 400, 100, 60 | Eukaryotes and bacteria | Galaxea fascicularis, Mycedium elephantotus, and Pachyseris speciosa | Metatranscriptome and metagenome | [141] |
Retroviridae, Hepadnaviridae, Parvoviridae, Iridoviridae, Herpesviridae | 70–150 | Target vertebrates and invertebrates | Acanthastrea echinata, Diploastrea heliopora, Fungia sp., and Plerogyra sinuosa | Metatrnascriptome and metagenome | |
Herpesviridae | 120–150 | Bivalves, protist, bacteria | Porites compressa | Metagenome | [142] |
Podoviridae-like, Geminiviridae-like | 100 | Coral surface microlayer | Porites lobata Porites lutea Porites australiensis | Transmission Electron Microscopy | [143] |
Mimiviridae | 40 | Symbiodinium spp. cells | Mussismilia braziliensis | Transmission Electron Microscopy | [144] |
Potyviridae | 11–20 nm | Symbiodinium spp. cells | Unclassified | Transcriptome | [145] |
Unclassified | - | Symbiodinium spp. | Acropora tenuis | Metagenomic analysis | [130] |
Herpesvirus-like | 120–150 | Acropora aspera, Acropora millepora | Transmission Electron Microscopy | [41] | |
Viral-like particles | - | - | Acropora muricara, Porites spp. | Transmission Electron Microscopy | [129] |
Myoviridae, Poxviridae, Microviridae | 47–65, 200 | - | Acropora millepora | Metagenome | [20] |
Virus-like particles | - | - | Acopora muricata | Transmission Electron Microscopy | [30] |
Herpesviridae, Circoviridae, Nanoviridae | 45–120 | - | Montastraea annularis | Metagenome | [44] |
Herpes-like viral | 120 | - | Montastraea annularis | Transmission Electron Microscopy | [44] |
Dicorna-like virus | 30 | - | Acropora tenuis, Fungia fun-gites, Galaxea fascicularis, Pocillopora damicornis | PCR-Based Assay | [146] |
Bavuloviridae, Herpesviridae, Polydnaviridae, Retroviridae, Myoviridae | 45–400 | - | Pocillopora spp. | Metagenome | [147] |
Myoviridae, siphoviridae, Mimiviridae, Baculoviridae | 60–400 | - | Siderastrea siderea | Metagenome | [148] |
Virus Type | Host | Size (nm in Diameter) | Detection Methods | References |
---|---|---|---|---|
LCDV-Clownfish-Indonesia | Amphiprion percula | 120–350 | Polymerase Chain Reaction, LAMP | [170] |
LCDV-Gilthead Sea Bream-Spain | Sparus aurata | 120–350 | Next-Generation Sequencing | [171] |
LCDV-Paradise Fish-China | Macropodus opercularis | 120–350 | Electron microscopy, Polymerase Chain Reaction | [162] |
LCDV-Sea Bream-Israel | Sparus aurata | 120–350 | Polymerase Chain Reaction | [172] |
LCDV-Flounder-China | Paralichthys olivaceus | 120–350 | Whole-genome Shotgun Sequencing | [173] |
LCDV-Largemouth Bass-USA | Micropterus salmoides | 120–350 | Nested Polymerase Chain Reaction | [174] |
LCDV-Flounder-NorthSea | Platichthys flesus | 120–350 | Polymerase Chain Reaction | [165] |
LCDV-Sa | Sparus aurata | 120–350 | Nested Polymerase Chain Reaction | [161] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambalavanan, L.; Iehata, S.; Fletcher, R.; Stevens, E.H.; Zainathan, S.C. A Review of Marine Viruses in Coral Ecosystem. J. Mar. Sci. Eng. 2021, 9, 711. https://doi.org/10.3390/jmse9070711
Ambalavanan L, Iehata S, Fletcher R, Stevens EH, Zainathan SC. A Review of Marine Viruses in Coral Ecosystem. Journal of Marine Science and Engineering. 2021; 9(7):711. https://doi.org/10.3390/jmse9070711
Chicago/Turabian StyleAmbalavanan, Logajothiswaran, Shumpei Iehata, Rosanne Fletcher, Emylia H. Stevens, and Sandra C. Zainathan. 2021. "A Review of Marine Viruses in Coral Ecosystem" Journal of Marine Science and Engineering 9, no. 7: 711. https://doi.org/10.3390/jmse9070711
APA StyleAmbalavanan, L., Iehata, S., Fletcher, R., Stevens, E. H., & Zainathan, S. C. (2021). A Review of Marine Viruses in Coral Ecosystem. Journal of Marine Science and Engineering, 9(7), 711. https://doi.org/10.3390/jmse9070711