Glaciers and Paleorecords Tell Us How Atmospheric Circulation Changes and Successive Cooling Periods Occurred in the Fennoscandia during the Holocene
Abstract
:1. Introduction
1.1. The Climate System Is Subject to Long-Period Resonantly Forced Rossby Waves
1.2. Subharmonic Modes
1.3. Evolution of Glaciers in the Northern Europe and the Climatic Transitions during the Holocene
2. Materials and Methods
2.1. Data
2.2. Filtering of Climatic Signals in Subharmonic Modes
3. Results
3.1. δ18O in GRIP Ice Core (Subharmonic Modes to )
3.2. Tree-Rings and Pollen in Northern Fennoscandia
3.3. Glaciers in Norway
3.4. δ18O in GRIP Ice Core (Subharmonic Modes to )
4. Discussion
4.1. Anharmonic and Subharmonic Modes
4.2. Abrupt Cooling during the Holocene
4.3. Formation and Growth of Glaciers from the Mid-Holocene
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briner, J.P.; McKay, N.P.; Axford, Y.; Bennike, O.; Bradley, R.S.; de Vernal, A.; Fisher, D.; Francus, P.; Fréchette, B.; Gajewski, K.; et al. Holocene climate change in Arctic Canada and Greenland. Quat. Sci. Rev. 2016, 147, 340–364. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.L. Resonantly Forced Baroclinic Waves in the Oceans: A New Approach to Climate Variability. J. Mar. Sci. Eng. 2021, 9, 13. [Google Scholar] [CrossRef]
- Pinault, J.L. Modulated Response of Subtropical Gyres: Positive Feedback Loop, Subharmonic Modes, Resonant Solar and Orbital Forcing. J. Mar. Sci. Eng. 2018, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.L. Resonantly Forced Baroclinic Waves in the Oceans: Subharmonic Modes. J. Mar. Sci. Eng. 2018, 6, 78. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.L. Resonant Forcing of the Climate System in Subharmonic Modes. J. Mar. Sci. Eng. 2020, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.L. Regions Subject to Rainfall Oscillation in the 5–10 Year Band. Climate 2018, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Pinault, J.L. Global warming and rainfall oscillation in the 5–10 year band in Western Europe and Eastern North America. Clim. Chang. 2012, 114, 621–650. [Google Scholar] [CrossRef]
- Clark, P.U.; Archer, D.; Pollard, D.; Blum, J.D.; Rial, J.A.; Brovkin, V.; Mix, A.C.; Pisias, N.G.; Roy, M. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 2006, 25, 3150–3184. [Google Scholar] [CrossRef] [Green Version]
- Explain with Realism Climate Variability. Available online: http://climatorealist.neowordpress.fr/subharmonic-modes/ (accessed on 2 April 2021).
- Dahl, S.O.; Bakke, J.; Lie, O.; Nesje, A. Reconstruction of former glacier equilibrium-line altitudes based on proglacial sites: An evaluation of approaches and selection of sites. Quat. Sci. Rev. 2003, 22, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, D. Modern glacier characteristics as a basis for inferring former climates with particular reference to the Loch Lomond stadial. Quat. Sci. Rev. 1984, 3, 291–309. [Google Scholar] [CrossRef]
- Dyurgerov, M. Glacier Mass Balance and Regime: Data of Measurements and Analysis; Meier, M., Armstrong, R., Eds.; Occasional Paper No. 55; Institute of Arctic and Alpine Research, University of Colorado: Boulder, CO, USA, 2002; pp. 10–15. [Google Scholar]
- Karle’n, W. Lacustrine sediments and tree-line variations as indicators of climatic fluctuations in Lappland, Northern Sweden. Geogr. Ann. 1976, 58, 1–34. [Google Scholar] [CrossRef]
- Nesje, A.; Matthews, J.A.; Dahl, S.O.; Berrisford, M.S.; Andersson, C. Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway: Evidence from pro-glacial lacustrine sediment records. Holocene 2001, 11, 267–280. [Google Scholar] [CrossRef]
- Snowball, I.F.; Sandgren, P. Lake sediment studies of Holocene glacial activity in the Karsa valley, northern Sweden: Contrasts in interpretation. Holocene 1996, 6, 367–372. [Google Scholar] [CrossRef]
- Matthews, J.A.; Dahl, S.O.; Nesje, A.; Berrisford, M.S.; Andersson, C. Holocene glacier variations in central Jotunheimen, southern Norway, based on distal glaciolacustrine sediment cores. Quat. Sci. Rev. 2000, 19, 1625–1647. [Google Scholar] [CrossRef]
- Rosqvist, G.C.; Jonsson, C.; Yam, R.; Karle´n, W.; Shemesh, A. Diatom oxygen isotopes in pro-glacial lake sediments from northern Sweden: A 5000-year record of atmospheric circulation. Quat. Sci. Rev. 2004, 23, 851–859. [Google Scholar] [CrossRef]
- Giamali, C.; Koskeridou, E.; Antonarakou, A.; Ioakim, C.; Kontakiotis, G.; Karageorgis, A.P.; Roussakis, G.; Karakitsios, V. Multiproxy ecosystem response of abrupt Holocene climatic changes in the northeastern Mediterranean sedimentary archive and hydrologic regime. Quat. Res. 2019, 92, 665–685. [Google Scholar] [CrossRef]
- Bond, G.; Showers, W.; Cheseby, M.; Lotti, R.; Almasi, P.; de Menocal, P.; Priore, P.; Cullen, H.; Hadjas, I.; Bonani, G. A pervasive millennial scale cycle in North Atlantic Holocene and glacial climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [Green Version]
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S.; Steffensen, J.P.; Sveinbjörnsdóttir, A.E.; Jouzel, J.; et al. Evidence for general instability of past climate from a 250 kyr ice-core record. Nature 1993, 264, 218–220. [Google Scholar] [CrossRef]
- Matskovsky, V.V.; Helama, S. Testing long-term summer temperature reconstruction based on maximum density chronologies obtained by reanalysis of tree-ring data sets from northernmost Sweden and Finland. Clim. Past 2014, 10, 1473–1487. [Google Scholar] [CrossRef] [Green Version]
- Helama, S.; Seppä, H.; Bjune, A.E.; Birks, H.J.B. Fusing pollen-stratigraphic and dendroclimatic proxy data to reconstruct summer temperature variability during the past 7.5 ka in subarctic Fennoscandia. J. Paleolimnol. 2012, 48, 275–286. [Google Scholar] [CrossRef]
- Bakke, J.; Lie, Ø.; Nesje, A.; Olaf Dahl, S.; Paasche, Ø. Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, Western Norway. Holocene 2005, 15, 161–176. [Google Scholar] [CrossRef]
- Bakke, J.; Olaf Dahl, S.; Paasche, Ø.; Løvlie, R.; Nesje, A. Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the Lateglacial and Holocene. Holocene 2005, 15, 518–540. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide for wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Vinther, B.; Clausen, H.B.; Johnsen, S.J.; Rasmussen, S.O.; Andersen, K.K.; Buchardt, S.L.; Dahl-Jensen, D.; Seierstad, I.K.; Siggaard-Andersen, M.-L.; Steffensen, J.P.; et al. A synchronized dating of three Greenland ice cores throughout the Holocene. J. Geophys. Res. 2006, 111, D13102. [Google Scholar] [CrossRef]
- Johnsen, S.J.; Clausen, H.B.; Dansgaard, W.; Gundestrup, N.S.; Hammer, C.U.; Andersen, U.; Andersen, K.K.; Hvidberg, C.S.; Dahl-Jensen, D.; Steffensen, J.P.; et al. The d18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. 1997, 102, 26397–26410. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinault, J.-L. Glaciers and Paleorecords Tell Us How Atmospheric Circulation Changes and Successive Cooling Periods Occurred in the Fennoscandia during the Holocene. J. Mar. Sci. Eng. 2021, 9, 832. https://doi.org/10.3390/jmse9080832
Pinault J-L. Glaciers and Paleorecords Tell Us How Atmospheric Circulation Changes and Successive Cooling Periods Occurred in the Fennoscandia during the Holocene. Journal of Marine Science and Engineering. 2021; 9(8):832. https://doi.org/10.3390/jmse9080832
Chicago/Turabian StylePinault, Jean-Louis. 2021. "Glaciers and Paleorecords Tell Us How Atmospheric Circulation Changes and Successive Cooling Periods Occurred in the Fennoscandia during the Holocene" Journal of Marine Science and Engineering 9, no. 8: 832. https://doi.org/10.3390/jmse9080832
APA StylePinault, J. -L. (2021). Glaciers and Paleorecords Tell Us How Atmospheric Circulation Changes and Successive Cooling Periods Occurred in the Fennoscandia during the Holocene. Journal of Marine Science and Engineering, 9(8), 832. https://doi.org/10.3390/jmse9080832