In Situ Aerobic Bioremediation of Sediments Polluted with Petroleum Hydrocarbons: A Critical Review
Abstract
:1. Introduction
2. Engineered Bioremediation
2.1. Bioaugmentation
2.2. Biostimulation
2.2.1. Nutrients
2.2.2. Oxygen
2.2.3. Dispersion of Oil
2.2.4. Phytoremediation
2.3. Intrinsic Bioremediation
3. Aerobic Bioremediation
3.1. Oxygen Profile in Marine Sediments
3.2. Microbial Community and Metabolism Affected by Shifts in Sediments’ Oxygenation
3.3. Oxygen Amendments
3.3.1. Oxygen Releasing Compounds
3.3.2. Pure Oxygen Injection
3.3.3. Hydrogen Peroxide Infiltration
3.3.4. Ozone Injection
4. Sediment Aeration
4.1. Aeration Systems
4.1.1. Tilling
4.1.2. Biosparging-Forced Aeration
4.1.3. Coarse and Fine Bubble Diffusers
Coarse Bubble Diffusers
Fine Bubble Diffusers
4.1.4. Injectors
4.1.5. Micro-Nano Bubbles Technology
4.1.6. Mechanical Agitation
4.1.7. Active Nautical Depth
4.1.8. Floating Bioreactor
4.1.9. Modular Slurry System (MSS)
4.1.10. Module for the Decontamination of Units of Sediment (MODUS)
5. Aerobic Bioremediation of Sediments—Case Studies
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Zhang, W.; Li, S.; Zhang, F.; Zhu, Y.; Huang, X. Identifying critical factors of oil spill in the tanker shipping industry worldwide. J. Clean. Prod. 2018, 180, 1–10. [Google Scholar] [CrossRef]
- Jernelöv, A. The threats from oil spills: Now, then, and in the future. Ambio 2010, 39, 353–366. [Google Scholar] [CrossRef] [Green Version]
- On Scene Coordinator Report: Deepwater Horizon Oil Spill. Available online: https://lccn.loc.gov/2012427375 (accessed on 4 July 2021).
- Zhang, B.; Matchinski, E.J.; Chen, B.; Ye, X.; Jing, L.; Lee, K. Marine oil spills-Oil pollution, sources and effects. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 3, pp. 391–406. [Google Scholar]
- Mapelli, F.; Scoma, A.; Michoud, G.; Aulenta, F.; Boon, N.; Borin, S.; Kalogerakis, N.; Daffonchio, D. Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms. Trends Biotechnol. 2017, 35, 860–870. [Google Scholar] [CrossRef]
- Hoang, A.T.; Pham, V.V.; Nguyen, D.N. A Report of Oil Spill Recovery Technologies. Int. J. Appl. Eng. Res. 2018, 13, 4915–4928. [Google Scholar]
- Milić, J.S.; Beškoski, V.P.; Ilić, M.V.; Ali, S.A.M.; Gojgić-Cvijović, G.D.; Vrvić, M.M. Bioremediation of soil heavily contaminated with crude oil and its products: Composition of the microbial consortium. J. Serb. Chem. Soc. 2009, 74, 455–460. [Google Scholar] [CrossRef]
- Introduction to in Situ Bioremediation of Groundwater. Available online: https://www.epa.gov/remedytech/introduction-situ-bioremediation-groundwater (accessed on 2 July 2021).
- Paniagua-Michel, J.; Rosales, A. Marine Bioremediation—A Sustainable Biotechnology of Petroleum Hydrocarbons Biodegradation in Coastal and Marine Environments. J. Bioremediat. Biodegrad. 2015, 6, 273. [Google Scholar]
- Xia, Y.; Boufadel, M.C. Lessons from the Exxon Valdez Oil Spill Disaster in Alaska. Disaster Adv. 2010, 3, 270–273. [Google Scholar]
- Kimes, N.E.; Callaghan, A.V.; Suflita, J.M.; Morris, P.J. Microbial transformation of the Deepwater Horizon oil spill-past, present, and future perspectives. Front. Microbiol. 2014, 5, 603. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Enhanced bioremediation of oil spills in the sea. Curr. Opin. Biotechnol. 2014, 27, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, L.; Beolchini, F.; Ciani, M.; Dell’Anno, A. Improvement of Bioremediation Performance for the Degradation of Petroleum Hydrocarbons in Contaminated Sediments. Appl. Environ. Soil Sci. 2011, 2011, 319657. [Google Scholar] [CrossRef]
- Vitali, F.; Mandalakis, M.; Chatzinikolaou, E.; Dialianis, T.; Senatore, G.; Casalone, E.; Mastromei, G.; Sergi, S.; Lussu, R.; Arvanitidis, C.; et al. Benthic prokaryotic community response to polycyclic aromatic hydrocarbon chronic exposure: Importance of emission sources in Mediterranean ports. Front. Mar. Sci. 2019, 6, 1–13. [Google Scholar] [CrossRef]
- El Fantroussi, S.; Agathos, S.N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 2005, 8, 268–275. [Google Scholar] [CrossRef]
- Venosa, A.; Suidan, M.; Wrenn, B.; Strohmeier, K.L.; Haines, J.; Eberhart, B.; King, A.; Holder, E. Bioremediation of an Experimental Oil Spill on the Shoreline of Delaware Bay. Environ. Sci. Technol. 1996, 30, 1764–1775. [Google Scholar] [CrossRef]
- Lee, V.K.; Levy, E.M. Enhanced biodegradation of a light crude oil in sandy beaches. In Proceedings of the 1987 International Oil Spill Conference, Baltimore, MA, USA, 6–9 April 1987; pp. 411–416. [Google Scholar]
- Simon, M.A.; Bonner, J.S.; Page, C.A.; Townsend, R.T.; Mueller, D.C.; Fuller, C.B.; Autenrieth, R.L. Evaluation of two commercial bioaugmentation products for enhanced removal of petroleum from a wetland. Ecol. Eng. 2004, 22, 263–277. [Google Scholar] [CrossRef]
- Fodelianakis, S.; Antoniou, E.; Mapelli, F.; Magagnini, M.; Nikolopoulou, M.; Marasco, R.; Barbato, M.; Tsiola, A.; Tsikopoulou, I.; Giaccaglia, L.; et al. Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome. J. Hazard. Mater. 2015, 287, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol. Res. 2010, 165, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; He, S.; Zou, Y.; Liu, J.; Zhao, R.; Yin, X.; Zhang, H.; Li, Y. Quantitative evaluation of in-situ bioremediation of compound pollution of oil and heavy metal in sediments from the Bohai Sea, China. Mar. Pollut. Bull. 2020, 150, 110787. [Google Scholar] [CrossRef]
- Zhao, G.; Sheng, Y.; Wang, C.; Yang, J.; Wang, Q.; Chen, L. In situ microbial remediation of crude oil-soaked marine sediments using zeolite carrier with a polymer coating. Mar. Pollut. Bull. 2018, 129, 172–178. [Google Scholar] [CrossRef]
- Gallego, J.R.; Fernández, L.; Fernández, J.R.; Díez-Sanz, F.; Ordóñez, S.; González-Rojas, E.; Pelaez, A.I.; Sánchez, J. On Site Bioremediation and Washing Techniques in a Cobble Beach Affected by Prestige Oil Spill. In Modern Multidisciplinary Applied Microbiology: Exploiting Microbes and Their Interactions; Mendez-Vilas, A., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2008; pp. 556–560. [Google Scholar]
- Dueholm, M.S.; Marques, I.G.; Karst, S.M.; D’Imperio, S.; Tale, V.P.; Lewis, D.; Nielsen, P.H.; Nielsen, J.L. Survival and activity of individual bioaugmentation strains. Bioresour. Technol. 2015, 186, 192–199. [Google Scholar] [CrossRef]
- Hosokawa, R.; Nagai, M.; Morikawa, M.; Okuyama, H. Autochthonous bioaugmentation and its possible application to oil spills. World, J. Microbiol. Biotechnol. 2009, 25, 1519–1528. [Google Scholar] [CrossRef] [Green Version]
- Nikolopoulou, M.; Pasadakis, N.; Kalogerakis, N. Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar. Pollut. Bull. 2013, 72, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.; Crisafi, F.; Denaro, R.; Cappello, S.; Russo, D.; Calogero, R.; Santisi, S.; Catalfamo, M.; Modica, A.; Smedile, F.; et al. Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Front. Microbiol. 2014, 5, 162. [Google Scholar] [CrossRef] [Green Version]
- Andreoni, V.; Gianfreda, L. Bioremediation and monitoring of aromatic-polluted habitats. Appl. Microbiol. Biotechnol. 2007, 76, 287–308. [Google Scholar] [CrossRef]
- Prince, R.C. Biostimulation of Marine Crude Oil Spills Using Dispersants. In Hydrocarbon and Lipid Microbiology Protocols, 1st ed.; McGenity, T., Timmis, K., Nogales, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 95–104. [Google Scholar]
- Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites. Available online: https://www.epa.gov/remedytech/phytoremediation-contaminated-soil-and-ground-water-hazardous-waste-sites (accessed on 10 July 2021).
- Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Dutta, A.; Pal, S.; Gupta, A.; Sarkar, J.; Chatterjee, A.; Saha, A.; Sarkar, P.; Sar, P.; Kazy, S.K. Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour. Technol. 2018, 253, 22–32. [Google Scholar] [CrossRef]
- Atlas, R.M. Microbial degradation of petroleum hydrocarbons: An environmental perspective. Microbiol. Rev. 1981, 45, 180–209. [Google Scholar] [CrossRef]
- Atlas, R.M.; Bartha, R. Hydrocarbon Biodegradation and Oil Spill Bioremediation. In Advances in Microbial Ecology; Marshall, K.C., Ed.; Springer: Boston, MA, USA, 1992; Volume 12, pp. 287–338. [Google Scholar]
- Misselbrook, T.; Bittman, S.; Cordovil, C.M.D.S.; Rees, B.; Sylvester-Bradley, R.; Olesen, J.; Vallejo, A. Field Application of Organic and Inorganic Fertilizers and Manure. Draft Section for a Guidance Document. In Proceedings of the Workshop on Integrated Sustainable Nitrogen Management, Brussels, Belgium, 30 September–2 October 2019. [Google Scholar]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Lau, N.L.A.; Ng, K.L.; Obbard, J.P. Application of a slow-release fertilizer for oil bioremediation in beach sediment. J. Environ. Qual. 2004, 33, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Lau, A.N.L.; Lim, Y.G.; Obbard, J.P. Bioremediation of oil-contaminated sediments on an inter-tidal shoreline using a slow-release fertilizer and chitosan. Mar. Pollut. Bull. 2005, 51, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- Prince, R.C.; Bare, R.E.; Garrett, R.M.; Grossman, M.J.; Haith, C.E.; Keim, L.G.; Lee, K.; Holtom, G.J.; Lambert, P.; Sergy, G.A.; et al. Bioremediation of stranded oil on an arctic shoreline. Spill Sci. Technol. Bull. 2003, 8, 303–312. [Google Scholar] [CrossRef]
- Gallego, J.R.; Fernández, J.R.; Díez-Sanz, F.; Ordóñez, S.; Sastre, H.; González-Rojas, E.; Pelaez, A.I.; Sánchez, J. Bioremediation for shoreline cleanup: In situ vs. on-site treatments. Environ. Eng. Sci. 2007, 24, 493–504. [Google Scholar] [CrossRef]
- Jiménez, N.; Viñas, M.; Sabaté, J.; Díez, S.; Bayona, J.M.; Solanas, A.M.; Albaiges, J. The Prestige oil spill. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environ. Sci. Technol. 2006, 40, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, M.A.; Swannell, R.P.J.; Shiptonà, W.A.; Duke, N.C.; Hill, R.T. Effect of Bioremediation on the Microbial Community in Oiled Mangrove Sediments. Mar. Pollut. Bull. 2000, 41, 413–419. [Google Scholar] [CrossRef]
- Geng, X.; Pan, Z.; Boufadel, M.C.; Ozgokmen, T.; Lee, K.; Zhao, L. Simulation of oil bioremediation in a tidally influenced beach: Spatiotemporal evolution of nutrient and dissolved oxygen. J. Geophys. Res. Ocean. 2016, 121, 2385–2404. [Google Scholar] [CrossRef]
- Tate, P.T.; Shin, W.S.; Pardue, J.H.; Jackson, W.A. Bioremediation of an experimental oil spill in a coastal Louisiana salt marsh. Water Air Soil Pollut. 2012, 223, 1115–1123. [Google Scholar] [CrossRef]
- Ritzkowski, M.; Heyer, K.U.; Stegmann, R. Fundamental processes and implications during in situ aeration of old landfills. Waste Manag. 2006, 26, 356–372. [Google Scholar] [CrossRef]
- Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, E.J.P.; Lovley, D.R. Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediments under Sulfate-Reducing and Artificially Imposed Iron-Reducing Conditions. Environ. Sci. Technol. 1996, 30, 2784–2789. [Google Scholar] [CrossRef]
- How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites—A Guide for Corrective Action Plan Reviewers, Chapter 5, Landfarming. Available online: https://www.epa.gov/ust/how-evaluate-alternative-cleanup-technologies-underground-storage-tank-sites-guide-corrective (accessed on 11 July 2021).
- Fogel, S.; Norris, R.; Crockett, E.; Findlay, M. Enhanced Bioremediation Techniques for In Situ and On-Site Treatment of Petroleum-Contaminated Soils and Groundwater. Dairy Food Environ. Sanit. 1988, 9, 240–244. [Google Scholar]
- Goldsmith, C.D.; Balderson, R.K. Biokinetic Constants of a Mixed Microbial Culture with Model Diesel Fuel. Hazard. Waste Hazard. Mater. 1989, 6, 145–154. [Google Scholar] [CrossRef]
- Duke, N.C.; Burns, K.A.; Swannell, R.P.J.; Dalhaus, O.; Rupp, R.J. Dispersant Use and a Bioremediation Strategy as Alternate Means of Reducing Impacts of Large Oil Spills on Mangroves: The Gladstone Field Trials. Mar. Pollut. Bull. 2000, 41, 403–412. [Google Scholar] [CrossRef]
- Ferguson, R.M.W.; Gontikaki, E.; Anderson, J.A.; Witte, U. The variable influence of dispersant on degradation of oil hydrocarbons in subarctic deep-sea sediments at low temperatures (0–5 °C). Sci. Rep. 2017, 7, 2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef] [PubMed]
- Naughton, P.J.; Marchant, R.; Naughton, V.; Banat, I.M. Microbial biosurfactants: Current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol. 2019, 127, 12–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva R de, C.F.S.; Almeida, D.G.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int. J. Mol. Sci. 2014, 15, 12523–12542. [Google Scholar] [CrossRef]
- De Almeida, D.G.; Soares Da Silva, R.C.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Banat, I.M.; Sarubbo, L.A. Biosurfactants: Promising Molecules for Petroleum Biotechnology Advances. Front. Microbiol. 2016, 7, 1718. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.W.; Lee, H.; Kwon, B.O.; Khim, J.S.; Yim, U.H.; Kim, B.S.; Kim, J.J. Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environ. Pollut. 2018, 241, 254–264. [Google Scholar] [CrossRef]
- Sáenz-Marta, C.I.; Ballinas-Casarrubias, M.L.; Rivera-Chavira, B.E.; Nevárez-Moorillón, G.V. Biosurfactants as Useful Tools in Bioremediation. In Advances in Bioremediation of Wastewater and Polluted Soil; Shiomi, N., Ed.; IntechOpen: London, UK, 2015. [Google Scholar]
- Mandalenaki, A.; Kalogerakis, N.; Antoniou, E. Production of high purity biosurfactants using heavy oil residues as carbon source. Energies 2021, 14, 3557. [Google Scholar] [CrossRef]
- Kamath, R.; Rentz, J.A.; Schnoor, J.L.; Alvarez, P.J.J. Phytoremediation of Hydrocarbon-Contaminated Soils: Principles and Applications. Stud. Surf. Sci. Catal. 2004, 151, 447–478. [Google Scholar]
- Schnoor, J.L.; Licht, L.A.; McCutcheon, S.C.; Wolfe, N.L.; Carreira, L.H. Phytoremediation of Organic and Nutrient Contaminants. Environ. Sci. Technol. 1995, 29, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.; Mucha, A.P.; Almeida, C.M.R.; Bordalo, A.A. Potential of phytoremediation for the removal of petroleum hydrocarbons in contaminated salt marsh sediments. J. Environ. Manag. 2014, 137, 10–15. [Google Scholar] [CrossRef]
- Moreira, I.T.A.; Oliveira, O.M.C.; Triguis, J.A.; dos Santos, A.M.P.; Queiroz, A.F.S.; Martins, C.M.S.; Silva, C.S.; Jesus, R.S. Phytoremediation using Rizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchemical 2011, 99, 376–382. [Google Scholar] [CrossRef]
- Lee, K.; Merlin, F.X. Bioremediation of oil on shoreline environments: Development of techniques and guidelines. Pure Appl. Chem. 1999, 71, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.M.; Leonardo, G.M.; Bartlett, P.D.; Little, D.I.; Wilson, M.C. Long-term fate and effects of untreated thick oil deposits on salt marshes. In International Oil Spill Conference Proceedings 1993; pp. 395–399. Available online: https://meridian.allenpress.com/iosc/article/1993/1/395/198706/LONG-TERM-FATE-AND-EFFECTS-OF-UNTREATED-THICK-OIL (accessed on 5 June 2021).
- Merkl, N.; Schultze-Kraft, R.; Arias, M. Influence of fertilizer levels on phytoremediation of crude oil-contaminated soils with the tropical pasture grass Brachiaria brizantha (Hochst. ex a. rich.) stapf. Int. J. Phytoremediation 2005, 7, 217–230. [Google Scholar] [CrossRef]
- Kumar, G.; Shahi, S.K.; Singh, S. Bioremediation: An Eco-sustainable Approach for Restoration of Contaminated Sites. In Microbial Bioprospecting for Sustainable Development, 1st ed.; Singh, J., Sharma, D., Kumar, G., Sharma, N.R., Eds.; Springer: Singapore, 2018; pp. 115–136. [Google Scholar]
- Frutos, F.J.C.; Pérez, R.; Escolano, O.; Rubio, A.; Gimeno, A.; Fernandez, M.D.; Carbonell, G.; Perucha, C.; Laguna, J. Remediation trials for hydrocarbon-contaminated sludge from a soil washing process: Evaluation of bioremediation technologies. J. Hazard. Mater. 2012, 199–200, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Thavamani, P.; Ramadass, K.; Naidu, R.; Srivastava, P.; Megharaj, M. Remediation trials for hydrocarbon-contaminated soils in arid environments: Evaluation of bioslurry and biopiling techniques. Int. Biodeterior. Biodegrad. 2015, 101, 56–65. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, Y.C.; Liang, J.H.; Zhao, F.; Zhu, Y.G. A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour. Technol. 2012, 108, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Li, W.W.; Yu, H.Q. Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol. Adv. 2015, 33, 1–12. [Google Scholar] [CrossRef]
- Morris, J.M.; Jin, S. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells. J. Hazard. Mater. 2012, 213–214, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Matturro, B.; Viggi, C.C.; Aulenta, F.; Rossetti, S. Cable bacteria and the bioelectrochemical Snorkel: The natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front. Microbiol. 2017, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hoareau, M.; Erable, B.; Bergel, A. Microbial electrochemical snorkels (MESs): A budding technology for multiple applications. A mini review. Electrochem. Commun. 2019, 104, 106473. [Google Scholar] [CrossRef]
- Viggi, C.C.; Presta, E.; Bellagamba, M.; Kaciulis, S.; Balijepalli, S.K.; Zanaroli, G.; Papini, M.P.; Rossetti, S.; Aulenta, F. The “Oil-Spill Snorkel”: An innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front. Microbiol. 2015, 6, 881. [Google Scholar]
- Aulenta, F.; Palma, E.; Marzocchi, U.; Viggi, C.C.; Rossetti, S.; Scoma, A. Enhanced hydrocarbons biodegradation at deep-sea hydrostatic pressure with microbial electrochemical snorkels. Catalysts 2021, 11, 263. [Google Scholar] [CrossRef]
- Pfeffer, C.; Larsen, S.; Song, J.; Dong, M.; Besenbacher, F.; Meyer, R.L.; Kjeldsen, K.U.; Schreiber, L.; Gorby, Y.A.; El-Naggar, M.Y.; et al. Filamentous bacteria transport electrons over centimetre distances. Nature 2012, 491, 218–221. [Google Scholar] [CrossRef]
- Meysman, F.J.R. Cable Bacteria Take a New Breath Using Long-Distance Electricity. Trends Microbiol. 2018, 26, 411–422. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Z.; Wu, B.; Bjerg, J.T.; Hu, W.; Guo, X.; Guo, J.; Nielsen, L.P.; Qiu, R.; Xu, M. Cable bacteria extend the impacts of elevated dissolved oxygen into anoxic sediments. ISME J. 2021, 15, 1551–1563. [Google Scholar] [CrossRef] [PubMed]
- Bjerg, J.T.; Boschker, H.T.S.; Larsen, S.; Berry, D.; Schmid, M.; Millo, D.; Tataru, P.; Meysman, F.J.R.; Wagner, M.; Nielsen, L.P.; et al. Long-distance electron transport in individual, living cable bacteria. Proc. Natl. Acad. Sci. USA. 2018, 115, 5786–5791. [Google Scholar] [CrossRef] [Green Version]
- Müller, H.; Bosch, J.; Griebler, C.; Damgaard, L.R.; Nielsen, L.P.; Lueders, T.; Meckenstock, R.U. Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J. 2016, 10, 2010–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.J.; Sayles, F.L. Oxygen penetration depths and fluxes in marine sediments. Mar. Chem. 1996, 52, 123–131. [Google Scholar] [CrossRef]
- Cai, W.J.; Reimers, C.E. Benthic oxygen flux, bottom water oxygen concentration and core top organic carbon content in the deep northeast Pacific Ocean. Deep Sea Res. Part I 1995, 42, 1681–1699. [Google Scholar] [CrossRef]
- Orcutt, B.N.; Wheat, C.G.; Rouxel, O.; Hulme, S.; Edwards, K.J.; Bach, W. Oxygen consumption rates in subsea floor basaltic crust derived from a reaction transport model. Nat. Commun. 2013, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testing Micro-Nanobubble Generating Device at Different Salinities. Available online: https://www.aquaculturealliance.org/advocate/testing-micro-nanobubble-generating-device-at-different-salinities/ (accessed on 8 July 2021).
- Schmidtko, S.; Stramma, L.; Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 2017, 542, 335–339. [Google Scholar] [CrossRef]
- Brendel, P.J.; Luther, G.W. Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Porewaters of Marine and Freshwater Sediments. Environ. Sci. Technol. 1995, 29, 751–761. [Google Scholar] [CrossRef]
- Technology Screening Matrix. Available online: https://frtr.gov/matrix/default.cfm (accessed on 9 July 2021).
- Sinkko, H.; Hepolehto, I.; Lyra, C.; Rinta-Kanto, J.M.; Villnäs, A.; Norkko, J.; Norkko, A.; Timonen, S. Increasing oxygen deficiency changes rare and moderately abundant bacterial communities in coastal soft sediments. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Broman, E.; Sjöstedt, J.; Pinhassi, J.; Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 2017, 5, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conley, D.J. Ecology: Save the Baltic Sea. Nature 2012, 486, 463–464. [Google Scholar] [CrossRef]
- Oxygen Release Compound. Available online: https://regenesis.com/en/oxygen-release-compound-orc/ (accessed on 4 July 2021).
- Sandefur, C.A.; Koenigsberg, S.S. The use of hydrogen Release Compound for the accelerated bioremediation of anaerobically degradable contaminants: The advent of time-release electron donors. Remediation 1999, 10, 31–53. [Google Scholar] [CrossRef]
- Hanh, D.N.; Rajbhandari, B.K.; Annachhatre, A.P. Bioremediation of sediments from intensive aquaculture shrimp farms by using calcium peroxide as slow oxygen release agent. Environ. Technol. 2005, 26, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fang, X.; Zhang, Z.; Hu, Y.; Lu, J. An oxygen slow-releasing material and its application in water remediation as oxygen supplier. Environ. Technol. 2017, 38, 2793–2799. [Google Scholar] [CrossRef]
- Abdallah, E.; Goncalves, A.A.; Gagnon, G.A. Oxygen release compound as a chemical treatment for nutrient rich estuary sediments and water. J. Environ. Sci. Health A 2009, 44, 707–713. [Google Scholar] [CrossRef]
- Vezzulli, L.; Pruzzo, C.; Fabiano, M. Response of the bacterial community to in situ bioremediation of organic-rich sediments. Mar. Pollut. Bull. 2004, 49, 740–751. [Google Scholar] [CrossRef]
- Pure & Enriched: The Advantages of Using Oxygen in Wastewater Treatment Processes. Available online: https://www.airbestpractices.com/industries/wastewater/pure-enriched-advantages-using-oxygen-wastewater-treatment-processes (accessed on 15 July 2021).
- Che, L.; Jin, W.; Zhou, X.; Cao, C.; Han, W.; Qin, C.; Tu, R.; Chen, Y.; Feng, X.; Wang, Q. Biological Reduction of Organic Matter in Buji River Sediment (Shenzhen, China) with Artificial Oxygenation. Water 2020, 12, 3592. [Google Scholar] [CrossRef]
- A Quick Look at Bioremediation. Available online: https://staff.icar.cnr.it/spezzano/colombo/bioris/cortesto.htm (accessed on 27 July 2021).
- Zappi, M.; White, K.; Hwang, H.M.; Bajpai, R.; Qasim, M. The fate of hydrogen peroxide as an oxygen source for bioremediation activities within saturated aquifer systems. J. Air Waste Manag. Assoc. 2000, 50, 1818–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardieck, D.L.; Bouwer, E.J.; Stone, A.T. Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A review. J. Contam. Hydrol. 1992, 9, 221–242. [Google Scholar] [CrossRef]
- Bajpai, R.K.; Zappi, M.E.; Gunnison, D. Additives for Establishment of Biologically Active Zones during in Situ Bioremediation. Ann. N. Y. Acad. Sci. 1994, 721, 450–465. [Google Scholar] [CrossRef]
- Talvenmäki, H.; Saartama, N.; Haukka, A.; Lepikkö, K.; Pajunen, V.; Punkari, M.; Yan, G.; Sinkkonen, A.; Piepponen, T.; Silvennoinen, H.; et al. In situ bioremediation of Fenton’s reaction-treated oil spill site, with a soil inoculum, slow release additives, and methyl-β-cyclodextrin. Environ. Sci. Pollut. Res. 2021, 28, 20273–20289. [Google Scholar] [CrossRef] [PubMed]
- Mahaseth, T.; Kuzminov, A. Potentiation of hydrogen peroxide toxicity: From catalase inhibition to stable DNA-iron complexes. Mutat. Res. Rev. Mutat. Res. 2017, 773, 274–281. [Google Scholar] [CrossRef]
- Sutton, N.B.; Grotenhuis, J.T.C.; Langenhoff, A.A.M.; Rijnaarts, H.H.M. Efforts to improve coupled in situ chemical oxidation with bioremediation: A review of optimization strategies. J. Soils Sediments 2011, 11, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Nykänen, A.; Kontio, H.; Klutas, O.; Penttinen, O.P.; Kostia, S.; Mikola, J.; Romantschuk, M. Increasing lake water and sediment oxygen levels using slow release peroxide. Sci. Total Environ. 2012, 429, 317–324. [Google Scholar] [CrossRef]
- Thomas, J.; Beitinger, E.; Grosskinsky, H.; Koch, T.; Preuss, V. Innovative in situ treatment options for contaminated sediments. In Proceedings of the 5th International SEDNET Conference, Oslo, Norway, 27–29 May 2008. [Google Scholar]
- Chen, T.; Maldonado, J.; Delgado, A.G.; Yavuz, B.M.; Proctor, A.J.; Maldonado, J.; Zuo, Y.; Westerhoff, P.; Krajmalnik-Brown, R.; Rittmann, B.E. Ozone enhances biodegradability of heavy hydrocarbons in soil. J. Environ. Eng. Sci. 2016, 11, 7–17. [Google Scholar] [CrossRef]
- How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. Chapter XIII—Chemical Oxidation. Available online: https://www.epa.gov/ust/how-evaluate-alternative-cleanup-technologies-underground-storage-tank-sites-guide-corrective (accessed on 3 June 2021).
- Shih, Y.J.; Binh, N.T.; Chen, C.W.; Chen, C.F.; Dong, C.D. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes. Chemosphere 2016, 150, 294–303. [Google Scholar] [CrossRef]
- Lofrano, G.; Libralato, G.; Minetto, D.; De Gisi, S.; Todaro, F.; Conte, B.; Calabrò, D.; Quatraro, L.; Notarnicola, M. In situ remediation of contaminated marine sediment: An overview. Environ. Sci. Pollut. Res. 2017, 24, 5189–5206. [Google Scholar] [CrossRef] [Green Version]
- Sergy, G.A. The Svalbard Experimental Oilspill Field Trials. In Proceedings of the 21st Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Edmonton, AB, Canada, 10–12 June 1998. [Google Scholar]
- Owens, E.H.; Sergy, G.A.; Guénette, C.C.; Prince, R.C.; Lee, K. The reduction of stranded oil by in situ shoreline treatment options. Spill Sci. Technol. Bull. 2003, 8, 257–272. [Google Scholar] [CrossRef]
- Sergy, G.A.; Guénette, C.C.; Owens, E.H.; Prince, R.C.; Lee, K. In-situ treatment of oiled sediment shorelines. Spill Sci. Technol. Bull. 2003, 8, 237–244. [Google Scholar] [CrossRef]
- Garcia-Blanco, S.; Venosa, A.D.; Suidan, M.T.; Lee, K.; Cobanli, S.; Haines, J.R. Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation 2007, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.M.; Chen, C.Y.; Chen, S.C.; Chien, H.Y.; Chen, Y.L. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere 2008, 70, 1492–1499. [Google Scholar] [CrossRef]
- Juwarkar, A.A.; Singh, S.K.; Mudhoo, A. A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Biotechnol. 2010, 9, 215–288. [Google Scholar] [CrossRef]
- Philp, J.C.; Atlas, R.M. Bioremediation of Contaminated Soils and Aquifers. In Bioremediation: Applied Microbial Solutions for Real-World Environmental Cleanup; Philp, J.C., Atlas, R.M., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2005; pp. 139–236. [Google Scholar]
- How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites. A Guide for Corrective Action Plan Reviewers. Chapter VIII, Biosparging. Available online: https://www.epa.gov/ust/how-evaluate-alternative-cleanup-technologies-underground-storage-tank-sites-guide-corrective (accessed on 5 June 2021).
- Wagner, M.R.; Popel, H.J. Oxygen transfer and aeration efficiency—Influence of diffuser submergence, diffuser density, and blower type. Water Sci. Technol. 1998, 38, 1–6. [Google Scholar] [CrossRef]
- Bubble Aeration. Available online: http://www.nzdl.org/cgi-bin/library?e=d-00000–00---off-0aginfo--00–0----0–10–0---0---0direct-10---4-------0–0l--11-en-50---20-about---00–0-1–00–0-0–11----0–0-&a=d&c=aginfo&cl=CL2.14&d=HASH03bf527f36108e1b5ecaf3.8.6.6.1#HASH03bf527f36108e1b5ecaf3.8.6.6.1 (accessed on 4 July 2021).
- Fine Bubble Aeration Systems. Available online: https://www.wastewater.com/aerationsystems/fine-bubble-system (accessed on 25 July 2021).
- Alkhalidi, A.A.T.; Amano, R.S. Factors affecting fine bubble creation and bubble size for activated sludge. J. Water Environ. Technol. 2015, 29, 105–113. [Google Scholar] [CrossRef]
- Ashley, K.I.; Mavinic, D.S.; Hall, K.J. Bench-scale study of oxygen transfer in coarse bubble diffused aeration. Water Res. 1992, 26, 1289–1295. [Google Scholar] [CrossRef]
- Rosansky, S.; Condit, W.; Sirabian, R. NFESC Technical Report: Air Sparging Guidance Document; Naval Facilities Engineering Service Center: Washington, DC, USA, 2001; pp. 1–118. [Google Scholar]
- Rosansky, S.; Condit, W.; Sirabian, R. NAVFAC Technical Report: Best Practices for Injection and Distribution of Amendments; NAVFAC: Washington, DC, USA, 2013; pp. 93043–94370. [Google Scholar]
- He, Y.T.; Su, C. Use of Additives in Bioremediation of Contaminated Groundwater and Soil. In Advances in Bioremediation of Wastewater and Polluted Soil; Shiomi, N., Ed.; IntechOpen: London, UK, 2015. [Google Scholar]
- Li, H.; Hu, L.; Song, D.; Lin, F. Characteristics of micro-nano bubbles and potential application in groundwater bioremediation. Water Environ. Res. 2014, 86, 844–851. [Google Scholar] [CrossRef]
- Agarwal, A.; Ng, W.J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Innovative Design for Vortex Micro-Nano Bubble generator Based on TRIZ. In Proceedings of the 2016 3rd International Conference on Mechatronics and Information Technology, Shenzhen, China, 9–10 April 2016; Advances in Computer Science Research. Atlantic Press: New York, NY, USA, 2016; pp. 710–713. [Google Scholar]
- Ohgaki, K.; Khanh, N.Q.; Joden, Y.; Tsuji, A.; Nakagawa, T. Physicochemical approach to nanobubble solutions. Chem. Eng. Sci. 2010, 65, 1296–1300. [Google Scholar] [CrossRef]
- Ushikubo, F.Y.; Furukawa, T.; Nakagawa, R.; Enaria, M.; Makinoa, Y.; Kawagoea, Y.; Shiinab, T.; Oshitaa, S. Evidence of the existence and the stability of nano-bubbles in water. Colloids Surf. A Physicochem. Eng. Asp. 2010, 361, 31–37. [Google Scholar] [CrossRef]
- Takahashi, M.; Kawamura, T.; Yamamoto, Y.; Ohnari, H.; Himuro, S.; Shakutsui, H. Effect of shrinking microbubble on gas hydrate formation. J. Phys. Chem. B 2003, 107, 2171–2173. [Google Scholar] [CrossRef]
- Nanobubble Generator. Available online: https://www.acniti.com/tags/nano-bubble-generator/ (accessed on 2 June 2021).
- Wu, Y.; Lin, H.; Yin, W.; Shao, S.; Lv, S.; Hu, Y. Water Quality and Microbial Community Changes in an Urban River after Micro-Nano Bubble Technology in Situ Treatment. Water 2019, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Kirby, R. Minimising harbour siltation-findings of PIANC Working Group. Ocean. Dyn. 2011, 61, 233–244. [Google Scholar] [CrossRef]
- Pang, Q.X.; Han, P.P.; Zhang, R.B.; Wen, C.P. Delaying Effect of Extracellular Polymer Substances on Fluid Mud Consolidation and Application for Nautical Depth. J. Waterw. Port. Coast. Ocean. Eng. 2018, 144, 04018001. [Google Scholar] [CrossRef]
- Wurpts, R.; Torn, P. 15 years experience with fluid mud: Definition of the nautical bottom with rheological parameters. Terra Aqua 2005, 99, 22–32. [Google Scholar]
- Polrot, A. Marine Bioremediation of Port Sediment: Investigation of Tributyltin Degradation Using Active Nautical Depth. In Proceedings of the 15th International Conference on Microbial Interactions & Microbial Ecology, Barcelona, Spain, 17–18 August 2020. [Google Scholar]
- Cappello, S.; Calogero, R.; Santisi, S.; Genovese, M.; Denaro, R.; Genovese, L.; Giuliano, L.; Mancini, G.; Yakimov, M.M. Bioremediation of oil polluted marine sediments: A bio-engineering treatment. Int. Microbiol. 2015, 18, 127–134. [Google Scholar] [PubMed]
- Perin, G.; Romagnoli, F.; Perin, F.; Giacometti, A. Preliminary Study on Mini-Modus Device Designed to Oxygenate Bottom Anoxic Waters without Perturbing Polluted Sediments. Environments 2020, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Bragg, J.R.; Prince, R.C.; Harner, E.J.; Atlas, R.M. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 1994, 368, 413–418. [Google Scholar] [CrossRef]
- Guidelines for the Bioremediation of Marine Shorelines and Freshwater Wetlands. Available online: https://www.epa.gov/emergency-response/guidelines-bioremediation-marine-shorelines-and-freshwater-wetlands (accessed on 5 June 2021).
- Prince, R.C.; Bragg, J.R. Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremediat. J. 1997, 1, 97–104. [Google Scholar] [CrossRef]
- Swannell, R.P.J.; Lee, K.; Mcdonagh, M. Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 1996, 60, 342–365. [Google Scholar] [CrossRef]
- Guidelines for The Bioremediation of Oil-Contaminated Salt Marshes. Available online: https://www.epa.gov/emergency-response/guidelines-bioremediation-oil-contaminated-salt-marshes (accessed on 5 June 2021).
- Bonardi, M.; Ravagnan, G.; Morucchio, C.; Tosi, L.; Almeida, P.; De Sanctis, S. Environmental Recovery of Coastal Areas: The Bio—Remediation Study Case of the Industrial Harbour of Marghera, Venice, Italy. J. Coast. Res. 2006, 1044–1048. [Google Scholar]
- Bonardi, M.; Ravagnan, G.; Stirling, J.; Morucchio, C.; De Sanctis, S. Innovative treatment by bioremediation of contaminated sediments from the Venice Lagoon, Italy: The Arsenale Vecchio case study. J. Coast. Res. 2007, 50, 895–899. Available online: https://www.jstor.org/stable/26481709 (accessed on 5 June 2021).
- Delille, D.; Delille, B.; Pelletier, E. Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: The microbial response. Microb. Ecol. 2002, 44, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Kostecki, M.; Mazierski, J. Biodegradation of polycyclic aromatic hydrocarbons in bottom sediments in presence of calcium peroxide. Przem. Chem. 2008, 87, 278–283. [Google Scholar]
- Fu, D.; Singh, R.P.; Yang, X.; Ojha, C.S.P.; Surampalli, R.Y.; Kumar, A.J. Sediment in-situ bioremediation by immobilized microbial activated beads: Pilot-scale study. J. Environ. Manag. 2018, 226, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Venosa, A.D.; Lee, K.; Suidan, M.T.; Garcia-Blanco, S.; Cobanli, S.; Moteleb, M.; Haines, J.R.; Tremblay, G.; Hazelwood, M. Bioremediation and biorestoration of a crude oil-contaminated freshwater wetland on the St. Lawrence river. Bioremediat. J. 2002, 6, 261–281. [Google Scholar] [CrossRef]
- Swannell, R.P.J.; Mitchell, D.; Lethbridge, G.; Jones, D.; Heath, D.; Hagley, M.; Jones, M.; Petch, S.; Milne, R.; Croxford, R.; et al. A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the sea empress incident. Environ. Technol. 1999, 20, 863–873. [Google Scholar] [CrossRef]
- Swannell, R.P.J.; Mitchell, D.; Jones, D.M.; Petch, S.; Head, I.M.; Lee, K.; Willis, A.; Lepo, J.E. Bioremediation of oil contaminated fine sediments. In International Oil Spill Conference Proceedings; American Petroleum Institute: Washington, DC, USA, 1999; pp. 751–756. [Google Scholar]
- Röling, W.F.; Milner, M.G.; Jones, D.M.; Fratepietro, F.; Swannell, R.P.; Daniel, F.; Head, I.M. Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl. Environ. Microbiol. 2004, 70, 2603–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, K.A.; Codi, S.; Duke, N.C. Gladstone, Australia field studies: Weathering and degradation of hydrocarbons in oiled mangrove and salt marsh sediments with and without the application of an experimental bioremediation protocol. Mar. Pollut. Bull. 2000, 41, 392–402. [Google Scholar] [CrossRef]
- Mills, M.A.; Bonner, J.S.; Page, C.A.; Autenrieth, R.L. Evaluation of bioremediation strategies of a controlled oil release in a wetland. Mar. Pollut. Bull. 2004, 49, 425–435. [Google Scholar] [CrossRef]
- Venosa, A.D.; Suidan, M.T.; Lee, K.; Cobanli, S.E.; Garcia-Blanco, S.; Haines, J.R. Bioremediation of oil-contaminated coastal freshwater and saltwater wetlands. J. Environ. Stud. 2002, 8, 139–148. [Google Scholar]
- Garcia-Blanco, S.; Moteleb, M.; Suidan, M.T.; Venosa, A.D.; Lee, K.; King, D.W. Restoration of an oil-contaminated St. Lawrence river shoreline: Bioremediation and phytoremediation. In International Oil Spill Conference Proceedings; American Petroleum Institute: Washington, DC, USA, 2001; pp. 303–308. [Google Scholar]
- Thomas, J.; Preuss, V.; Wach, A.; Beitinger, E.; Grosskinsky, H. Treatment of organic-rich sediments through combined in situ and on site techniques-Case Study. In Proceedings of the 6th International SEDNET Conference, Hamburg, Germany, 6–8 October 2009. [Google Scholar]
- Gallego, J.R.; González-Rojas, E.; Peláez, A.I.; Sánchez, J.; García-Martínez, M.J.; Llamas, J.F. Effectiveness of bioremediation for the prestige fuel spill: A summary of case studies. In Proceedings of the Second IASTED International Conference on Advanced Technology in the Environmental Field, Lanzarote, Spain, 6–8 February 2006; pp. 68–73. [Google Scholar]
- Tsutsumi, H.; Kono, M.; Takai, K.; Manabe, T.; Haraguchi, M.; Yamamoto, I.; Oppenheimer, C. Bioremediation on the shore after an oil spill from the Nakhodka in the sea of Japan. III. Field tests of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar. Pollut. Bull. 2000, 40, 320–324. [Google Scholar] [CrossRef]
Case Study | Location | Aquatic Environment | Type of Treatment 1 | Additives | Sediment Characteristics | Application Point | Duration of Application | Application Rate | Effectiveness | Reference/ Year |
---|---|---|---|---|---|---|---|---|---|---|
1 | Harbor of Marghera, Venice Lagoon, Italy | Port | FA+O | Oxygen | Quaternary sediments (unconsolidated sand, silt, clay, peats) | 50 cm above the sediments | 28 months | 12 h/day continuous operation | Reduction of heavy metal content | Bonardi et al. [147], 2006 |
2 | Arsenale shipyard, Venice Lagoon, Italy | Shipyard | FA+O | Oxygen | unconsolidated sand, silt, clay, peats | Sea floor | 6 months | During the night | Reduction of heavy metal content. Recovery of the water body above the sediments | Bonardi et al. [148], 2007 |
3 | Kerguelen Archipelago, The Grande Terre beach | Beach | BS | Slow-release fertilizer (Inipol EAP-22 or fish composts) | sand | - | 3 years | - | Complete removal of aliphatic hydrocarbons after 6 months | Delille, Delille and Pelletier [149], 2002 |
4 | Rybnik water basin, Poland | - | BS | Calcium peroxide | - | - | 150 days | 100 g/m2 and 200 g/m2 | Effective PAH removal | Kostecki and Mazierski [150], 2008 |
5 | Shedu River, Jiangsu, China | River | BA+BS | Microbial activated beads | - | On top of the sediments | 45 days | 1.77–2.12 kg/m2 | Good removal efficiency of pollutants | Fu et al. [151], 2018 |
6 | Fish Farm, 2 nm offshore Porto Palo (Agrigento, Italy) in the Sicily channel (Med Sea) | Fish Farm | BA BS BA + BS | Biovase Oxygen Releasing Compounds | - | - | 5 months | 0.5 kg/m2 Biovase 1 kg/m2 ORC | Higher bacterial density and enzymatic activity | Vezzulli, Pruzzo and Fabiano [96], 2004 |
7 | Bohai Sea, China | Sea | BA | Zeolite carrier with a polymer coating | - | Ocean floor | 70 days | 370 tons of remedy agents | Over 50% oil degradation | Zhao et al. [22], 2018 |
8 | Bohai Sea, China | Sea | BA | Zeolite carrier with a polymer coating | - | Ocean floor | 210 days | 487 tons/km2 of remedy agents | Increased oil biodegradation | Wang et al. [21], 2020 |
9 | Inter-tidal foreshore of Pulau Semakau, Singapore | Beach | BS | Slow-release fertilizer (Osmocote) Slow-release fertilizer + oil sorbent biopolymer (Chitosan) | 75.16% sand, 24.73% silt and 0.11% clay | Mixed on the top sediments | 105 days 95 days | 1.2% Os (w/w) and 0.1% chitosan (ChS) | Accelerated PAH degradation | Xu et al. [37], 2004; Xu et al. [38], 2005 |
10 | St. Lawrence River at Ste. Croix, Quebec, Canada | Shore | BS Ph | Inorganic Fertilizers (ammonium nitrate NH4NO3 and monobasic calcium phosphate Ca(H2PO4)2) | - | 2–3 cm | 455 days | 2.85 kg of NH4NO3 or 6.06 kg of NaNO3, and 1.22 kg of Ca(H2PO4)2·H2O per plot | No difference to natural attenuation | Venosa et al. [152], 2002 |
11 | Bullwell Bay, Milford Haven, UK | Beach | BS | Inorganic Fertilizer (Sodium Nitrate NaNO3 and Potassium phosphate KH2PO4) Slow-release fertilizer | shingle, pebble, clay | <10 mm | 2 months | Inorganic Fertilizer (1.15 kg NaNO3 and 0.08 kg KH2PO4 in 9 L seawater/plot/week Pellet slow-release fertilizer single application | Increased heavy fuel oil degradation in both cases | Swannell et al. [153], 1999 |
12 | Stert Flats, Somerset, United Kingdom | Mudflat | BS | Inorganic fertilizer (fertilizer grade Sodium Nitrate NaNO3 and Potassium phosphate KH2PO4) | fine sand | 15 cm | 108 days | Weekly for a month, every 2 weeks thereafter | Significant enhancement of light crude oil bioremediation | Swannell et al. [154], 1999 |
13 | Stert Flats, Somerset, United Kingdom | Mudflat | BS | Slow-release fertilizer Liquid inorganic fertilizer | fine sand | 10 cm | ~1 year | Weekly application of liquid fertilizer | Significant enhancement of light crude oil bioremediation | Röling et al. [155], 2004 |
14 | Fisherman’s Landing Wharf, Gladstone Australia | Mangrove Rhizophora stylosa Salt Marsh | BS + FA BS + FA + CD | Aquarium airstones Osmocote Tropical Corexit 9527 | - | 2–3 cm | 270 days | 100 L/min of air for 4 months Osmocote Tropical added in the beginning and after 6 months | 1 to 2-month lag time 1000-fold increase in alkane degraders | Ramsay et al. [42], 2000; Duke et al. [50], 2000; Burns, Codi and Duke [156], 2000 |
15 | San Jacinto Wetland Research Facility (SJWRF), San Jacinto River near Houston, Texas | Wetland | BS | Inorganic Nutrients (diammonium phosphate (NH4)2(HPO4)) Inorganic Nutrients + Alternative Electron Acceptor (Potassium Nitrate KNO3) | - | On top of the sediments | 140 days | Inorganic Nutrients 40 mg N/kg dry sediment weight Electron Acceptor 100 mg N–NO3−/kg dry sediment weight bi-weekly broadcast spreading | Enhanced biodegradation rates | Mills et al. [157], 2004 |
16 | San Jacinto Wetland Research Facility (SJWRF), San Jacinto River near Houston, Texas | Wetland | BA BS | Dry, wheat-bran-based powder containing a large consortium of hydrocarbon-degrading bacteria dry, wheat-bran-based (plus non-ionic surfactant) powder containing large numbers of oil-degrading microorganisms Inorganic fertilizer (diammonium phosphate (NH3)2HPO4) | - | On top of the sediments | 152 days | Applied 5 times (Days 4, 7, 11, 18, 28) Applied twice (Days 4 and 28) Broadcast spread prior to microorganisms | No additional response from exogenous microbes No significant differences to intrinsic bioremediation | Simon et al. [18], 2004 |
17 | Pointe au Chien Wildlife Management Area in Terrebonne Parish, LA | Spartina alterniflora salt marsh | BS Ph | Ammonium Nitrate (NH4NO3) Time-release Urea | - | On top of the sediments | 180 days | Ammonium Nitrate 60 g N/m2 Urea 30 g N/m2 | Alkane degradation rates were not enhanced | Tate et al. [44], 2012 |
18 | St. Lawrence River at Ste. Croix, Quebec, Canada Conrod’s Beach, on the Eastern Shore of Nova Scotia, Canada | Freshwater wetland Spartina alterniflora salt marsh | Ph BS + T | Ammonium Nitrate (NH4NO3) Sodium Nitrate (NaNO3) and Orthophosphate nutrients (Ca(H2PO4)2·H2O) | - | 2–3 cm | 65 weeks | 1 kg-N and 0.3 kg-P per plot applied weekly 1.28 kg and 0.55 kg/plot applied when N concentration <5 mg/L | Inorganic nutrients can accelerate hydrocarbon degradation when oil is present mostly on the surface | Venosa et al. [158], 2002 |
19 | Conrod’s Beach, on the Eastern Shore of Nova Scotia, Canada | Spartina alterniflora salt marsh | BS Ph | Ammonium Nitrate (NH4NO3) and Orthophosphate nutrients (Ca(H2PO4)2·H2O) | - | On top of the sediments | 20 weeks | 0.45 kg-N and 0.135 kg-P per plot applied on days 0, 50 and 82 | Alkane degradation enhancement, no effect on PAH degradation | Garcia-Blanco et al. [116], 2007 |
20 | St. Lawrence River at Ste. Croix, Quebec, Canada | Scirpus pungens freshwater shoreline | Ph BS + T | Ammonium Nitrate (NH4NO3) Sodium Nitrate (NaNO3) and Orthophosphate nutrients (Ca(H2PO4)2·H2O) | sandy loam (58% sand, 32% silt and 10% clay) | 1–2 cm | 21 weeks | 1 kg-N and 0.3 kg-P per plot reapplied when N concentration <5 mg/L | No significant biodegradation enhancement | Garcia-Blanco et al. [159], 2001 |
21 | Sveagruva, Spitsbergen, Svalbard, Norway | Arctic Shoreline | BS T BS + T | Soluble Fertilizer (ammonium nitrate NH4NO3 and superphosphate Ca(H2PO4)2) Slow-Release Fertilizer (Inipol SP1) Ferrous sulfate Yeast extract | Site 1: 41% pebble, 16% granules, 18% coarse sand, 25% sand/mud (Low energy); Site 2: 53% pebble, 11% granules, 13% coarse sand, 23% mud (moderate energy) Site 3: 75% pebble, 5% granules, 2% coarse sand, 18% sand/mud (locally high energy) | On top of the sediments 2–3 cm penetration | 400 days | 100 g/m2 ammonium nitrate 10 g/m2 superphosphate 1 g/m2 ferrous sulfate 0.1 g/m2 yeast extract (Day 0) 140 g/m2 Inipol SP1 1 g/m2 ferrous sulfate 0.1 g/m2 yeast extract (Day 7) 100 g/m2 Inipol SP1 (Day 23) 50 g/m2 ammonium nitrate 5 g/m2 superphosphate 1 g/m2 ferrous sulfate 0.1 g/m2 yeast extract 70 g/m2 Inipol SP1 (Day 58) | Tilling did not clearly contribute to the removal of oil within the intertidal sediments Biostimulation increased the biodegradation rates in the intertidal sediments | Prince et al. [113], 2003; Owens et al. [114], 2003; Sergy et al. [115], 2003 |
22 | N/A | Harbor | FA | Air | - | - | 12 months | 5–10 L/h | TPH removal up to 60–75% PAH removal up to 75–85% | Thomas et al. [107], 2008 |
23 | Upper Main Harbor, Frankfurt/M. Germany | Harbor | BS | Hydrogen Peroxide and Fenton’s reagents | Fine-grained (80% clay and silt) | Injected at the base of the sediment body | - | 0.16 L/h of 1% peroxide solution (5 g/kg sediment) per screen | No degradation of organic pollutants was observed | Thomas et al. [107], 2008 |
24 | N/A | Artificial fish ponds | FB | - | - | - | - | - | Under investigation | Thomas et al. [107], 2008; Thomas et al. [160], 2009 |
25 | Virgen del Mar beach, at the north coast of Spain | Beach | BS | Oleophilic fertilizer S-200 | Large and medium cobble stones overlying a mixed sand and gravel base | On top of the sediments | 220 days | 15.8 g N/m2 and 1.37 g P/m2, according to C:N:P ratio of 120:10:1, applied on Day 0 and Day 20 | The addition of fertilizer increased the biodegradation rate during the first 60 days | Jiménez et al. [41], 2006 |
26 | Bahinas beach, coast of Asturias, Northern Spain | Beach | BS BA | Ammonium Nitrate (NH4NO3) Ammonium Phosphate ((NH4)2PO4) Surfactant Commercial Bioaugmentation Products | Medium grain-size sand covered by pebbles and cobbles | On top of the sediments | 45 days | C:N:P ratio 100:10:1 Weekly application | Bioaugmentation had positive effects on the degradation of the saturated fractions | Gallego et al. [23], 2008; Gallego et al. [161], 2007 |
27 | Delaware Bay, United States | Shoreline | BS BA | Sodium Nitrate (NaNO3) Sodium Tripolyphosphate (Na5P3O10) | - | On top of the sediments | - | 2 kg of technical grade sodium nitrate (330 g of nitrogen) and 128 g of sodium tripolyphosphate applied everyday 30 L suspended mixed population of hydrocarbon degrading bacteria applied once a week | Biostimulation enhances the intrinsic rates of biodegradation Bioaugmentation has no significant effect | Venosa et al. [16], 1996 |
28 | Kasumi-cho, Kinosaki-gun, Hyogo prefecture, Japan | Beach | BA | TerraZyme™ | Rocks | On top of the sediments | 8 weeks | 250 kg | Significant enhancement on the biodegradation of heavy crude oil | Tsutsumi et al. [162], 2000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragkou, E.; Antoniou, E.; Daliakopoulos, I.; Manios, T.; Theodorakopoulou, M.; Kalogerakis, N. In Situ Aerobic Bioremediation of Sediments Polluted with Petroleum Hydrocarbons: A Critical Review. J. Mar. Sci. Eng. 2021, 9, 1003. https://doi.org/10.3390/jmse9091003
Fragkou E, Antoniou E, Daliakopoulos I, Manios T, Theodorakopoulou M, Kalogerakis N. In Situ Aerobic Bioremediation of Sediments Polluted with Petroleum Hydrocarbons: A Critical Review. Journal of Marine Science and Engineering. 2021; 9(9):1003. https://doi.org/10.3390/jmse9091003
Chicago/Turabian StyleFragkou, Efsevia, Eleftheria Antoniou, Ioannis Daliakopoulos, Thrassyvoulos Manios, Marianna Theodorakopoulou, and Nicolas Kalogerakis. 2021. "In Situ Aerobic Bioremediation of Sediments Polluted with Petroleum Hydrocarbons: A Critical Review" Journal of Marine Science and Engineering 9, no. 9: 1003. https://doi.org/10.3390/jmse9091003
APA StyleFragkou, E., Antoniou, E., Daliakopoulos, I., Manios, T., Theodorakopoulou, M., & Kalogerakis, N. (2021). In Situ Aerobic Bioremediation of Sediments Polluted with Petroleum Hydrocarbons: A Critical Review. Journal of Marine Science and Engineering, 9(9), 1003. https://doi.org/10.3390/jmse9091003