Can Suboptimal Visual Environments Negatively Affect Children’s Cognitive Development?
Abstract
:1. Introduction
2. Can Sensory Deprivation Impact Children’s Cognitive Development? Evidence from the Neuroscience of Brain Development
3. Architecture That Ignores the Mathematics of Life—And Psychological Health
4. Collective Amnesia about the Child’s Realm
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deoni, S.C.; Beauchemin, J.; Volpe, A.; D’Sa, V. Resonance Consortium. Impact of the Covid-19 Pandemic on Early Child Cognitive Development: Initial Findings in a Longitudinal Observational Study of Child Health. medRxiv 2021. [Google Scholar] [CrossRef]
- Shuffrey, L.C.; Firestein, M.R.; Kyle, M.; Fields, A.; Alcantara, C.; Amso, D.; Austin, J.; Bain, J.M.; Barbosa, J.; Bence, M.; et al. Birth during the COVID-19 pandemic, but not maternal SARS-CoV-2 infection during pregnancy, is associated with lower neurodevelopmental scores at 6-months. medRxiv 2021. [Google Scholar] [CrossRef]
- Hampshire, A.; Trender, W.; Chamberlain, S.R.; Jolly, A.E.; Grant, J.E.; Patrick, F.; Mazibuko, N.; Williams, H.R.; Barnby, P.; Hellyer, J.M.; et al. Cognitive Deficits in People Who Have Recovered from Covid-19. Lancet EClin. Med. 2021, 39, 101044. [Google Scholar] [CrossRef]
- Mackes, N.K.; Golm, D.; Sarkar, S.; Kumsta, R.; Rutter, M.; Fairchild, G.; Mehta, M.A.; Sonuga-Barke, E.J.S.; ERA Young Adult Follow-up Team. Early Childhood Deprivation Is Associated with Alterations in Adult Brain Structure Despite Subsequent Environmental Enrichment. Proc. Natl. Acad. Sci. USA 2020, 117, 641–649. [Google Scholar] [CrossRef] [Green Version]
- Sonuga-Barke, E.J.S.; Kennedy, M.; Kumsta, R.; Knights, N.; Golm, D.; Rutter, M.; Maughan, B.; Schlotz, W.; Kreppner, J. Child-to-Adult Neurodevelopmental and Mental Health Trajectories after Early Life Deprivation: The Young Adult Follow-up of the Longitudinal English and Romanian Adoptees Study. Lancet 2017, 389, 1539–1548. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, M.R.; Bennett, E.L. Psychobiology of plasticity: Effects of training and experience on brain and behavior. Behav. Brain Res. 1996, 78, 57–65. Available online: https://patterns.architexturez.net/doc/az-cf-172877 (accessed on 5 November 2021). [CrossRef]
- Mehaffy, M.; Salingaros, N.A. Intelligence and the Information Environment. Metropolis, 25 February 2012. Available online: https://patterns.architexturez.net/doc/az-cf-172600 (accessed on 26 August 2021).
- Kihslinger, R.L.; Nevitt, G.A. Early rearing environment impacts cerebellar growth in juvenile salmon. J. Exp. Biol. 2006, 209, 504–509. Available online: https://patterns.architexturez.net/doc/az-cf-172728 (accessed on 5 November 2021). [CrossRef] [Green Version]
- Kempermann, G.; Kuhn, G.H.; Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997, 386, 494–495. Available online: https://patterns.architexturez.net/doc/az-cf-172602 (accessed on 5 November 2021). [CrossRef] [PubMed]
- Sale, A.; Putignano, E.; Cancedda, L.; Landi, S.; Cirulli, F.; Berardi, N.; Maffei, L. Enriched environment and acceleration of visual system development. Neuropharmacology 2004, 47, 649–660. Available online: https://patterns.architexturez.net/doc/az-cf-172878 (accessed on 5 November 2021). [CrossRef]
- Wiesel, T.N.; Hubel, D.H. Effects of Visual Deprivation on Morphology and Physiology of Cells in the Cats Lateral Geniculate Body. J. Neurophysiol. 1963, 26, 978–993. [Google Scholar] [CrossRef] [PubMed]
- Wiesel, T.N.; Hubel, D.H. Single-Cell Responses in Striate Cortex of Kittens Deprived of Vision in One Eye. J. Neurophysiol. 1963, 26, 1003–1017. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. The Period of Susceptibility to the Physiological Effects of Unilateral Eye Closure in Kittens. J. Physiol. 1970, 206, 419–436. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, H.V.; Spinelli, D.N. Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats. Science 1970, 168, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Riesen, A.H. The Development of Visual Perception in Man and Chimpanzee. Science 1947, 106, 107–108. [Google Scholar] [CrossRef]
- Riesen, A.H. Studying Perceptual Development Using the Technique of Sensory Deprivation. J. Nerv. Ment. Dis. 1961, 132, 21–25. [Google Scholar] [CrossRef]
- Pan, Y.; Monje, M. Activity Shapes Neural Circuit Form and Function: A Historical Perspective. J. Neurosci. 2020, 40, 944–954. [Google Scholar] [CrossRef]
- Bourgeois, J.P.; Goldman-Rakic, P.S.; Rakic, P. Synaptogenesis in the Prefrontal Cortex of Rhesus Monkeys. Cereb. Cortex 1994, 4, 78–96. [Google Scholar] [CrossRef] [PubMed]
- National Research Council and Institute of Medicine; Committee on Integrating the Science of Early Childhood Development. The Developing Brain. In From Neurons to Neighborhoods: The Science of Early Childhood Development; Shonkoff, J.P., Phillips, D.A., Eds.; National Academy Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Sakai, J. Core Concept: How Synaptic Pruning Shapes Neural Wiring during Development and, Possibly, in Disease. Proc. Natl. Acad. Sci. USA 2020, 117, 16096–16099. [Google Scholar] [CrossRef]
- Kempermann, G.; Kuhn, H.G.; Gage, F.H. Experience-Induced Neurogenesis in the Senescent Dentate Gyrus. J. Neurosci. 1998, 18, 3206–3212. [Google Scholar] [CrossRef] [Green Version]
- Kempermann, G.; Gast, D.; Gage, F.H. Neuroplasticity in Old Age: Sustained Fivefold Induction of Hippocampal Neurogenesis by Long-Term Environmental Enrichment. Ann. Neurol. 2002, 52, 135–143. [Google Scholar] [CrossRef]
- Kempermann, G.; Gage, F.H.; Aigner, L.; Song, H.; Curtis, M.A.; Thuret, S.; Kuhn, H.G.; Jessberger, S.; Frankland, P.W.; Cameron, H.A.; et al. Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell 2018, 23, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, E.A.; Gadian, D.G.; Johnsrude, I.S.; Good, C.D.; Ashburner, J.; Frackowiak, R.S.J.; Frith, C.D. Navigation-Related Structural Change in the Hippocampi of Taxi Drivers. Proc. Natl. Acad. Sci. USA 2000, 97, 4398–4403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woollett, K.; Maguire, E.A. Acquiring “the Knowledge” of London’s Layout Drives Structural Brain Changes. Curr. Biol. 2011, 21, 2109–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, S.; Banaschewski, T.; Bokde, A.L.W.; Buchel, C.; Quinlan, E.B.; Desrivieres, S.; Flor, H.; Grigis, A.; Garavan, H.; Gowland, P.; et al. Brain Structure and Habitat: Do the Brains of Our Children Tell Us Where They Have Been Brought Up? Neuroimage 2020, 222, 117225. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S.; Duzel, S.; Eibich, P.; Krekel, C.; Wustemann, H.; Kolbe, J.; Martensson, J.; Goebel, J.; Gallinat, J.; Wagner, G.G.; et al. In Search of Features That Constitute an “Enriched Environment” in Humans: Associations between Geographical Properties and Brain Structure. Sci. Rep. 2017, 7, 11920. [Google Scholar] [CrossRef] [Green Version]
- Slater, A.; Schulenburg, C.V.D.; Brown, E.; Badenoch, M. Newborn Infants Prefer Attractive Faces. Infant Behav. Dev. 1998, 345–354. [Google Scholar] [CrossRef]
- Langlois, J.H.; Ritter, J.M.; Roggman, L.A.; Vaughn, L.S. Facial Diversity and Infant Preferences for Attractive Faces. Dev. Psychol. 1991, 27, 79–84. [Google Scholar] [CrossRef]
- Simoncelli, E.P.; Olshausen, B.A. Natural Image Statistics and Neural Representation. Annu. Rev. Neurosci. 2001, 24, 1193–1216. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.J.; Fischmeister, F.P.; Puig-Waldmuller, E.; Oh, J.; Geissler, A.; Robinson, S.; Fitch, W.T.; Beisteiner, R. Fractal Image Perception Provides Novel Insights into Hierarchical Cognition. Neuroimage 2014, 96, 300–308. [Google Scholar] [CrossRef]
- Fischmeister, F.P.; Martins, M.J.D.; Beisteiner, R.; Fitch, W.T. Self-Similarity and Recursion as Default Modes in Human Cognition. Cortex 2017, 97, 183–201. [Google Scholar] [CrossRef] [PubMed]
- Coburn, A.; Vartanian, O.; Chatterjee, A. Buildings, Beauty, and the Brain: A Neuroscience of Architectural Experience. J. Cogn. Neurosci. 2017, 29, 1521–1531. [Google Scholar] [CrossRef] [Green Version]
- Dzhambov, A.M.; Markevych, I.; Hartig, T.; Tilov, B.; Arabadzhiev, Z.; Stoyanov, D.; Gatseva, P.; Dimitrova, D.D. Multiple Pathways Link Urban Green- and Bluespace to Mental Health in Young Adults. Environ. Res. 2018, 166, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Hartig, T. Green Space, Psychological Restoration, and Health Inequality. Lancet 2008, 372, 1614–1615. [Google Scholar] [CrossRef]
- Joye, Y. Architectural Lessons from Environmental Psychology: The Case of Biophilic Architecture. Rev. Gen. Psychol. 2007, 11, 305–328. [Google Scholar] [CrossRef] [Green Version]
- Bowler, D.E.; Buyung-Ali, L.M.; Knight, T.M.; Pullin, A.S. A Systematic Review of Evidence for the Added Benefits to Health of Exposure to Natural Environments. BMC Public Health 2010, 10, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, J.; Pretty, J. What Is the Best Dose of Nature and Green Exercise for Improving Mental Health? A Multi-Study Analysis. Environ. Sci. Technol. 2010, 44, 3947–3955. [Google Scholar] [CrossRef] [PubMed]
- Valtchanov, D.; Barton, K.R.; Ellard, C. Restorative Effects of Virtual Nature Settings. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 503–512. [Google Scholar] [CrossRef]
- Berman, M.G.; Jonides, J.; Kaplan, S. The Cognitive Benefits of Interacting with Nature. Psychol. Sci. 2008, 19, 1207–1212. [Google Scholar] [CrossRef]
- Berman, M.G.; Kross, E.; Krpan, K.M.; Askren, M.K.; Burson, A.; Deldin, P.J.; Kaplan, S.; Sherdell, L.; Gotlib, I.H.; Jonides, J. Interacting with Nature Improves Cognition and Affect for Individuals with Depression. J. Affect. Disord. 2012, 140, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Berto, R. Exposure to Restorative Environments Helps Restore Attentional Capacity. J. Environ. Psychol. 2005, 25, 249–259. [Google Scholar] [CrossRef]
- Bratman, G.N.; Daily, G.C.; Levy, B.J.; Gross, J.J. The Benefits of Nature Experience: Improved Affect and Cognition. Landsc. Urban Plan. 2015, 138, 41–50. [Google Scholar] [CrossRef]
- Kaplan, S. The Restorative Benefits of Nature—Toward an Integrative Framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Kardan, O.; Gozdyra, P.; Misic, B.; Moola, F.; Palmer, L.J.; Paus, T.; Berman, M.G. Neighborhood Greenspace and Health in a Large Urban Center. Sci. Rep. 2015, 5, 11610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pretty, J.; Peacock, J.; Hine, R.; Sellens, M.; South, N.; Griffin, M. Green Exercise in the UK Countryside: Effects on Health and Psychological Well-Being, and Implications for Policy and Planning. J. Environ. Plan. Manag. 2007, 50, 211–231. [Google Scholar] [CrossRef]
- Bratman, G.N.; Hamilton, J.P.; Hahn, K.S.; Daily, G.C.; Gross, J.J. Nature Experience Reduces Rumination and Subgenual Prefrontal Cortex Activation. Proc. Natl. Acad. Sci. USA 2015, 112, 8567–8572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, F.E.; Sullivan, W.C. Environment and Crime in the Inner City—Does Vegetation Reduce Crime? Environ. Behav. 2001, 33, 343–367. [Google Scholar] [CrossRef]
- Kuo, F.E.; Sullivan, W.C. Aggression and Violence in the Inner City—Effects of Environment via Mental Fatigue. Environ. Behav. 2001, 33, 543–571. [Google Scholar] [CrossRef]
- Triebner, K.; Markevych, I.; Hustad, S.; Benediktsdottir, B.; Forsberg, B.; Franklin, K.A.; Gullon Blanco, J.A.; Holm, M.; Jaquemin, B.; Jarvis, D.; et al. Residential Surrounding Greenspace and Age at Menopause: A 20-Year European Study (Ecrhs). Environ. Int. 2019, 132, 105088. [Google Scholar] [CrossRef]
- Ulrich, R.S. View through a Window May Influence Recovery from Surgery. Science 1984, 224, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Salingaros, N. Unified Architectural Theory: Form, Language, Complexity: A Companion to Christopher Alexander’s “the Phenomenon of Life: The Nature of Order, Book 1”; Sustasis Foundation: Portland, OR, USA, 2013. [Google Scholar]
- Salingaros, N. Fractal Art and Architecture Reduce Physiological Stress. J. Biourbanism. 2012, 2, 11–28. Available online: https://patterns.architexturez.net/system/files/jbu-ii-2012-2_nikos-a-salingaros.pdf (accessed on 5 November 2021).
- Salingaros, N. The Sensory Value of Ornament. Commun. Cogn. 2003, 36, 331–351. Available online: https://philarchive.org/archive/SALTSV-2 (accessed on 5 November 2021).
- Taylor, R.P. Reduction of Physiological Stress Using Fractal Art and Architecture. Leonardo 2006, 39, 245–251. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.741.8120&rep=rep1&type=pdf (accessed on 5 November 2021). [CrossRef]
- Sussman, A.; Hollander, J.B. Cognitive Architecture: Designing for How We Respond to the Built Environment, 2nd ed.; Routledge: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Ruggles, D.H. Beauty, Neuroscience, and Architecture: Timeless Patterns and Their Impact on Our Well-Being; Fibonacci Press: Denver, CO, USA, 2018. [Google Scholar]
- Buchanan, P. The Big Rethink, Parts 1–12. The Architectural Review, 2011–2013. Available online: https://www.architectural-review.com/archive/campaigns/the-big-rethink (accessed on 5 November 2021).
- Salingaros, N.A. (Ed.) Two Series of Essays on Architectural Education. Architexturez Imprints. 2020. Available online: https://patterns.architexturez.net/doc/az-cf-193386 (accessed on 5 November 2021).
- Browning, W.D.; Ryan, C.O.; Clancy, J.O. 14 Patterns of Biophilic Design: Improving Health and Well-Being in the Built Environment; Terrapin Bright Green LLC: New York, NY, USA, 2014; Available online: https://www.terrapinbrightgreen.com/reports/14-patterns/ (accessed on 5 November 2021).
- Salingaros, N.A. Biophilia and Healing Environments; Terrapin Bright Green LLC: New York, NY, USA; Levellers Press: Amherst, MA, USA, 2015; Available online: https://www.terrapinbrightgreen.com/report/biophilia-healing-environments/ (accessed on 5 November 2021).
- Salingaros, N.A. The Biophilic Healing Index Predicts Effects of the Built Environment on Our Wellbeing. J. Biourbanism 2019, 8, 13–34. Available online: https://patterns.architexturez.net/doc/az-cf-193195 (accessed on 5 November 2021).
- Mehaffy, M.W.; Salingaros, N.A. The Surprisingly Important Role of Symmetry in Healthy Places. Planetizen. 8 March 2021. Available online: https://www.planetizen.com/features/112503-surprisingly-important-role-symmetry-healthy-places (accessed on 5 November 2021).
- McKivigan, M.S. Nature Deficit Disorder Is Really a Thing. New York Times. 23 June 2020. Available online: https://www.nytimes.com/2020/06/23/parenting/nature-health-benefits-coronavirus-outdoors.html (accessed on 5 November 2021).
- Sussman, A. What Neuroscience Says About Modern Architecture Approach. ArchDaily. 18 September 2020. Available online: https://www.archdaily.com/947890/what-neuroscience-says-about-modern-architecture-approach (accessed on 5 November 2021).
- Hutsler, J.J.; Zhang, H. Increased Dendritic Spine Densities on Cortical Projection Neurons in Autism Spectrum Disorders. Brain Res. 2010, 1309, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Gudsnuk, K.; Kuo, S.H.; Cotrina, M.L.; Rosoklija, G.; Sosunov, A.; Sonders, M.S.; Kanter, E.; Castagna, C.; Yamamoto, A.; et al. Loss of Motor-Dependent Macroautophagy Causes Autistic-Like Synaptic Pruning Deficits. Neuron 2014, 83, 1131–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garbett, K.; Ebert, P.J.; Mitchell, A.; Lintas, C.; Manzi, B.; Mirnics, K.; Persico, A.M. Immune Transcriptome Alterations in the Temporal Cortex of Subjects with Autism. Neurobiol. Dis. 2008, 30, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Voineagu, I.; Wang, X.; Johnston, P.; Lowe, J.K.; Tian, Y.; Horvath, S.; Mill, J.; Cantor, R.M.; Blencowe, B.J.; Geschwind, D.H. Transcriptomic Analysis of Autistic Brain Reveals Convergent Molecular Pathology. Nature 2011, 474, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.; Keehn, B.; Oram, J.K.; Leyden, K.M.; Keown, C.L.; Muller, R.A. Functional Differentiation of Posterior Superior Temporal Sulcus in Autism: A Functional Connectivity Magnetic Resonance Imaging Study. Biol. Psychiatry 2011, 70, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Redcay, E. The Superior Temporal Sulcus Performs a Common Function for Social and Speech Perception: Implications for the Emergence of Autism. Neurosci. Biobehav. Rev. 2008, 32, 123–142. [Google Scholar] [CrossRef]
- Zahn, R.; Moll, J.; Krueger, F.; Huey, E.D.; Garrido, G.; Grafman, J. Social Concepts Are Represented in the Superior Anterior Temporal Cortex. Proc. Natl. Acad. Sci. USA 2007, 104, 6430–6435. [Google Scholar] [CrossRef] [Green Version]
- Crompton, A. The Fractal Nature of the Everyday Environment. Environ. Plan. B Plan. Des. 2001, 28, 243–254. [Google Scholar] [CrossRef]
- Robles, K.E.; Liaw, N.A.; Taylor, R.P.; Baldwin, D.A.; Sereno, M.E. A Shared Fractal Aesthetic across Development. Hum. Soc. Sci. Commun. 2020, 7, 158. [Google Scholar] [CrossRef]
- Richerson, P.J.; Boyd, R. Not by Genes Alone: How Culture Transformed Human Evolution; University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Burman, J.T. Updating the Baldwin Effect. The Biological Levels behind Piaget’s New Theory. New Ideas Psychol. 2013, 363–373. [Google Scholar] [CrossRef]
- Curl, J.S. Making Dystopia: The Strange Rise and Survival of Architectural Barbarism; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Levine, M.H.; Smith, S.V. Starting Points: Meeting the Needs of Our Youngest Children; Abridged Version; Carnegie Corporation: New York, NY, USA, 1994; Available online: https://patterns.architexturez.net/doc/az-cf-172876 (accessed on 8 November 2021).
- Lippman, P.C. Evidence-Based Design of Elementary and Secondary Schools; John Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Aresta, M.; Salingaros, N.A. The Importance of Domestic Space in the Times of COVID-19. Challenges 2021, 12, 27. [Google Scholar] [CrossRef]
- Ruder, D.B. Screen Time and the Brain: Digital devices can interfere with everything from sleep to creativity. Harvard Medical School. 19 June 2019. Available online: https://hms.harvard.edu/news/screen-time-brain (accessed on 26 August 2021).
- Anderson, J. A study of kids’ screen time explains the vicious cycle that makes parents unable to say no. Quartz. 1 August 2017. Available online: https://qz.com/1042581/a-study-of-kids-screen-time-explains-the-vicious-cycle-that-makes-parents-unable-to-say-no/ (accessed on 5 November 2021).
- Beyens, I.; Eggermont, S. Putting Young Children in Front of the Television: Antecedents and Outcomes of Parents’ Use of Television as a Babysitter. Commun. Q. 2014, 62, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Council on Communications and Media. Media and Young Minds. Pediatrics 2016, 138, e20162591. [Google Scholar] [CrossRef] [Green Version]
- Alpha Go Website. Deep Mind Research. 2021. Available online: https://deepmind.com/research/case-studies/alphago-the-story-so-far (accessed on 26 August 2021).
- Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.; Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.; Graepel, T.; et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 2020, 588, 604–609. [Google Scholar] [CrossRef]
- Hutton, J.S.; Dudley, J.; Horowitz-Kraus, T.; DeWitt, T.; Holland, S.K. Associations between Screen-Based Media Use and Brain White Matter Integrity in Preschool-Aged Children. JAMA Pediatr. 2020, 174, e193869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, C. Unhealthy Video Gaming: What Parents Can Do to Prevent It. HealthyChildren.org. 28 October 2020. Available online: https://www.healthychildren.org/English/family-life/Media/Pages/Unhealthy-Video-Gaming.aspx (accessed on 5 November 2021).
- HuggaMind. Infant Brain Stimulation. 2014. Available online: http://www.huggamind.com/highcontrast.php (accessed on 5 November 2021).
- Tiny Love. The Advantages of Black & White in Developing Newborns’ Vision. 2021. Available online: https://www.tinylove.com/us_en/articles/newborn-development (accessed on 5 November 2021).
- Salingaros, N.A. A Theory of Architecture, 2nd ed.; Sustasis Press: Portland, OR, USA, 2014. [Google Scholar]
- Skelton, A.E.; Franklin, A. Infants look longer at colors that adults like when colors are highly saturated. Psychon. Bull. Rev. 2020, 27, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Tarr, P. Consider the Walls. Beyond the Journal: Young Children on the Web. 1–5 May 2004. Available online: https://coursemedia.erikson.edu/eriksononline/CPC/2014_2015/Module1/Documents/Environments/ConsidertheWalls_Journal_article.pdf (accessed on 5 November 2021).
- Fisher, A.V.; Godwin, K.E.; Seltman, H. Visual environment, attention allocation, and learning in young children: When too much of a good thing may be bad. Psychol. Sci. 2014, 25, 1362–1370. [Google Scholar] [CrossRef]
- Stern-Ellran, K.; Zilcha-Mano, S.; Sebba, R.; Levit-Binnun, N. Disruptive Effects of Colorful vs. Non-colorful Play Area on Structured Play—A Pilot Study with Preschoolers. Front. Psychol. 2016, 7, 1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehaffy, M.; Salingaros, N. A Vision for Architecture as More Than the Sum of Its Parts: How Modernist Fundamentalism Degrades the Human and Natural Environment. On The Commons. 11 November 2013. Available online: http://www.onthecommons.org/magazine/vision-architecture-more-sum-its-parts#sthash.v1iaLQW4.mQyMh2Cg.dpbs (accessed on 5 November 2021).
- Mehaffy, M.; Salingaros, N. Symmetry in architecture: Toward an overdue reassessment. Symmetry Cult. Sci. 2021, 32, 311–343. Available online: https://journal-scs.symmetry.hu/abstract/?pid=895 (accessed on 5 November 2021). [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavdas, A.A.; Salingaros, N.A. Can Suboptimal Visual Environments Negatively Affect Children’s Cognitive Development? Challenges 2021, 12, 28. https://doi.org/10.3390/challe12020028
Lavdas AA, Salingaros NA. Can Suboptimal Visual Environments Negatively Affect Children’s Cognitive Development? Challenges. 2021; 12(2):28. https://doi.org/10.3390/challe12020028
Chicago/Turabian StyleLavdas, Alexandros A., and Nikos A. Salingaros. 2021. "Can Suboptimal Visual Environments Negatively Affect Children’s Cognitive Development?" Challenges 12, no. 2: 28. https://doi.org/10.3390/challe12020028
APA StyleLavdas, A. A., & Salingaros, N. A. (2021). Can Suboptimal Visual Environments Negatively Affect Children’s Cognitive Development? Challenges, 12(2), 28. https://doi.org/10.3390/challe12020028