Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET
Abstract
:1. Introduction
- Rather than carrying an “omnibus” study of adaptive penalized QR, we carry out a detailed study by distinguishing different types of high leverage points under different distribution scenarios
- –
- Collinearity influential points that comprise collinearity inducing and collinearity masking ones.
- –
- A “mixture” of collinearity and high leverage points that are not collinearity influential.
- Unlike the conditional mean regression estimator, which is a global one, the regression quantile estimator is a local one. Therefore, we suggest a -based estimator instead of () parameter-based estimator suggested in the literature to derive adaptive weights in extending - and -E- procedures to - and -- procedures, respectively.
- We further extend - and -- procedures to - and -- procedures using the same methodology.
- We carry a comparative study of these models using simulation studies and well-known data sets from the literature.
2. Quantile Regression
2.1. Variable Selection in Quantile Regression
2.1.1. Choice of Adaptive Weights for
2.2. Adaptive Penalized Weighted Quantile Regression
2.3. Asymptotic Properties
- (i)
- The regression errors , are , with th quantile zero and a continuous, positive density in a neighborhood of zero and F distributed [25]. NOTE: and , in the neighborhood of 0 and real quantile .
- (ii)
- Let , where for are known positive values that satisfy [14].
- (iii)
- Consider the design , such that there exists a positive definite matrix ∑, where with
- Sparsity: ;
- converges asymptotically in limit to .
- (iv)
- As , .
- (v)
- The random errors are independent with the distribution function of . We assume that each is locally linear near zero (with a positive slope) and . Define , which is a convex function for each n and i.
- (vi)
- Assume that, for each , , where is a strictly convex function taking values in .
3. Simulation Study
3.1. Simulation Design Scenarios
- (i)
- —the well-behaved orthogonalized design matrix (where the initial unorthogonalized’s columns are generated from ) satisfy the condition . We first generate the response data, , where ∼ with and . We find the singular value decomposition of the design matrix , given by , where and are orthogonal with the diagonal entries of . The diagonal entries of are the eigenvalues of the design matrix . Finally, the design matrix is given by such that since is orthogonal. We use the design matrix as a baseline when comparing with scenarios –.
- (ii)
- /—the design matrix with the most extreme point by Euclidean distance moved 10 units in the X direction () and 100 units in the X direction . The resultant extreme points are collinearity inducing points for scenarios and (see Figure 1).
- (iii)
- /—the design matrix with the most and second most extreme points by Euclidean distance moved 10 and 100 units, respectively, in the X direction. The two extreme points have a masking effect on collinearity (see scenarios and in Figure 1).—a correlated design matrix case with high leverage points [14,30]. In , we partitioned the design matrix, , where the uncontaminated part, and the contaminated sub-matrix ( is the mean vector of ones and is an identity matrix). The exponential decay , for , generates the th entry of covariance matrix and is the mean vector of zeros. The design matrix has contamination points (using contamination rate of ) from observations.
3.2. Results
3.2.1. D1 under the t-Distribution
3.2.2. D2 and D4 under Normal Distribution
3.2.3. D3 and D5 under the Normal Distribution
3.2.4. D2 and D3 under the t-Distribution
3.2.5. D6 under the t-Distribution
3.3. Examples
3.4. The Jet-Turbine Engine Data
3.5. The Gunst and Mason Data
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
least squares | |
least absolute deviation | |
quantile regression | |
east absolute shrinkage and selection operator | |
E- | elastic net |
smoothly clipped absolute deviation | |
minimax concave penalty | |
weighted quantile regression | |
adaptive | |
- | quantile regression adaptive |
-- | quantile regression adaptive elastic net |
- | weighted quantile regression |
- | weighted quantile regression adaptive |
-- | weighted quantile regression adaptive elastic net |
minimum covariance determinant | |
weighted regression | |
regression quantile |
Appendix A
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D4: N-distribution | QR-LASSO | −0.03(1.40) | 5.50 | 3.49 | 0.44 | 0.02 | |
QR-E-NET | −0.07(3.56) | 0.00 | 1.06 | 0.01 | 0.02 | ||
QR-ALASSO | 0.00(1.37) | 88.50 | 5.00 | 0.15 | 0.01 | ||
QR-AE-NET | −0.03(3.45) | 55.00 | 4.00 | 0.02 | 0.02 | ||
QR-LASSO | −1.31(6.57) | 5.00 | 3.46 | 0.64 | 0.02 | ||
QR-E-NET | −0.78(5.30) | 0.00 | 1.60 | 0.36 | 0.02 | ||
QR-ALASSO | −1.21(7.80) | 0.00 | 4.97 | 1.62 | 0.00 | ||
QR-AE-NET | −0.27(5.07) | 0.00 | 4.31 | 1.50 | 0.01 | ||
WQR-LASSO | 0.00(0.85) | 67.50 | 4.58 | 0.00 | 0.04 | ||
WQR-E-NET | 0.00(0.90) | 33.00 | 4.05 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.02(0.74) | 98.00 | 4.99 | 0.01 | 0.03 | ||
WQR-AE-NET | 0.01(0.82) | 94.50 | 4.95 | 0.01 | 0.06 | ||
WQR-LASSO | −0.04(2.33) | 32.50 | 4.64 | 0.59 | 0.04 | ||
WQR-E-NET | −0.06(2.34) | 20.50 | 4.01 | 0.42 | 0.04 | ||
WQR-ALASSO | 0.02(2.10) | 17.50 | 4.97 | 1.21 | 0.01 | ||
WQR-AE-NET | 0.02(2.20) | 15.50 | 4.95 | 1.26 | 0.02 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D5: N-distribution | QR-LASSO | 2.68(4.14) | 12.00 | 5.00 | 1.89 | 0.01 | |
QR-E-NET | 3.27(4.67) | 0.00 | 4.94 | 2.94 | 0.04 | ||
QR-ALASSO | 1.15(1.85) | 74.00 | 5.00 | 0.30 | 0.01 | ||
QR-AE-NET | 3.26(4.65) | 0.00 | 5.00 | 2.87 | 0.04 | ||
QR-LASSO | 3.61(5.43) | 1.00 | 5.00 | 2.57 | 0.05 | ||
QR-E-NET | 3.68(5.45) | 0.00 | 4.94 | 2.87 | 0.04 | ||
QR-ALASSO | 3.42(5.20) | 12.50 | 5.00 | 2.03 | 0.00 | ||
QR-AE-NET | 3.54(5.47) | 0.00 | 4.98 | 2.94 | 0.00 | ||
WQR-LASSO | 0.50(0.82) | 71.00 | 4.61 | 0.00 | 0.04 | ||
WQR-E-NET | 0.53(0.82) | 46.00 | 4.23 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.51(0.75) | 99.50 | 5.00 | 0.01 | 0.04 | ||
WQR-AE-NET | 0.52(0.79) | 99.50 | 5.00 | 0.01 | 0.06 | ||
WQR-LASSO | 1.57(2.39) | 36.50 | 4.64 | 0.55 | 0.04 | ||
WQR-E-NET | 1.67(2.46) | 27.50 | 4.24 | 0.43 | 0.04 | ||
WQR-ALASSO | 1.58(2.36) | 41.50 | 4.96 | 0.67 | 0.02 | ||
WQR-AE-NET | 1.71(2.42) | 50.50 | 4.97 | 0.54 | 0.03 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D2: t-distribution | QR-LASSO | −0.01(1.27) | 11.50 | 3.31 | 0.00 | 0.02 | |
QR-E-NET | −0.02(1.60) | 0.00 | 1.89 | 0.00 | 0.02 | ||
QR-ALASSO | 0.03(1.23) | 87.00 | 4.87 | 0.00 | 0.02 | ||
QR-AE-NET | 0.05(1.45) | 0.00 | 3.05 | 0.00 | 0.03 | ||
QR-LASSO | −0.02(0.61) | 10.50 | 3.32 | 0.00 | 0.03 | ||
QR-E-NET | 0.00(0.84) | 0.00 | 1.94 | 0.00 | 0.02 | ||
QR-ALASSO | −0.02(0.61) | 97.00 | 4.97 | 0.00 | 0.02 | ||
QR-AE-NET | 0.01(0.77) | 0.00 | 3.00 | 0.00 | 0.03 | ||
WQR-LASSO | −0.03(0.83) | 48.00 | 4.29 | 0.00 | 0.04 | ||
WQR-E-NET | −0.03(0.86) | 3.00 | 2.69 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.03(0.84) | 99.50 | 5.00 | 0.00 | 0.04 | ||
WQR-AE-NET | 0.02(0.88) | 84.50 | 4.84 | 0.00 | 0.06 | ||
WQR-LASSO | 0.00(0.41) | 39.50 | 4.16 | 0.00 | 0.04 | ||
WQR-E-NET | 0.00(0.43) | 3.00 | 2.78 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.01(0.42) | 99.50 | 5.00 | 0.00 | 0.05 | ||
WQR-AE-NET | 0.01(0.43) | 95.50 | 4.96 | 0.00 | 0.08 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D3: t-distribution | QR-LASSO | 0.82(1.29) | 3.50 | 2.91 | 0.02 | 0.01 | |
QR-E-NET | 1.57(2.23) | 0.00 | 0.17 | 0.00 | 0.01 | ||
QR-ALASSO | 0.81(1.24) | 96.50 | 4.97 | 0.00 | 0.03 | ||
QR-AE-NET | 1.06(1.53) | 0.00 | 3.00 | 0.00 | 0.03 | ||
QR-LASSO | 0.37(0.66) | 4.00 | 2.84 | 0.00 | 0.01 | ||
QR-E-NET | 1.04(1.66) | 0.00 | 0.14 | 0.00 | 0.01 | ||
QR-ALASSO | 0.40(0.64) | 100.00 | 5.00 | 0.00 | 0.03 | ||
QR-AE-NET | 0.79(1.09) | 0.00 | 3.00 | 0.00 | 0.05 | ||
WQR-LASSO | 0.40(0.76) | 49.00 | 4.28 | 0.00 | 0.04 | ||
WQR-E-NET | 0.42(0.77) | 4.50 | 2.89 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.54(0.89) | 91.50 | 4.91 | 0.01 | 0.03 | ||
WQR-AE-NET | 0.59(0.95) | 64.00 | 4.55 | 0.00 | 0.04 | ||
WQR-LASSO | 0.19(0.36) | 43.00 | 4.25 | 0.00 | 0.05 | ||
WQR-E-NET | 0.22(0.38) | 3.50 | 2.77 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.27(0.45) | 96.50 | 4.97 | 0.00 | 0.04 | ||
WQR-AE-NET | 0.30(0.47) | 82.00 | 4.80 | 0.00 | 0.06 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D6: t-distribution | QR-LASSO | 0.05(1.26) | 51.00 | 4.35 | 0.00 | 0.05 | |
QR-E-NET | 0.03(1.30) | 1.50 | 2.29 | 0.00 | 0.04 | ||
QR-ALASSO | 0.03(1.22) | 99.50 | 5.00 | 0.00 | 0.04 | ||
QR-AE-NET | 0.05(1.28) | 51.50 | 4.51 | 0.00 | 0.07 | ||
QR-LASSO | 0.00(0.64) | 72.50 | 4.65 | 0.00 | 0.05 | ||
QR-E-NET | 0.01(0.67) | 5.00 | 3.00 | 0.00 | 0.04 | ||
QR-ALASSO | 0.00(0.63) | 96.50 | 4.96 | 0.00 | 0.04 | ||
QR-AE-NET | 0.00(0.64) | 24.50 | 4.00 | 0.00 | 0.06 | ||
WQR-LASSO | 0.01(0.87) | 55.50 | 4.45 | 0.00 | 0.04 | ||
WQR-E-NET | −0.01(0.89) | 6.00 | 3.23 | 0.00 | 0.04 | ||
WQR-ALASSO | −0.01(0.63) | 94.50 | 4.93 | 0.00 | 0.04 | ||
WQR-AE-NET | −0.01(0.66) | 23.00 | 3.91 | 0.00 | 0.05 | ||
WQR-LASSO | −0.01(0.44) | 44.00 | 4.19 | 0.00 | 0.04 | ||
WQR-E-NET | 0.00(0.47) | 5.00 | 3.13 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.00(0.37) | 99.00 | 4.99 | 0.00 | 0.05 | ||
WQR-AE-NET | 0.00(0.37) | 85.00 | 4.85 | 0.00 | 0.07 |
References
- Chatterjee, S.; Hadi, A.S. Impact of simultaneous omission of a variable and an observation on a linear regression equation. Comput. Stat. Data Anal. 1988, 6, 129–144. [Google Scholar] [CrossRef]
- Bloomfield, P.; Steiger, W. Least absolute deviations curve-fitting. SIAM J. Sci. Stat. Comput. 1980, 1, 290–301. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 33–50. [Google Scholar] [CrossRef]
- Breiman, L. Better subset regression using the nonnegative garrote. Technometrics 1995, 37, 373–384. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the Elastic Net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Zhao, P.; Yu, B. On model selection consistency of Lasso. J. Mach. Learn. Res. 2006, 7, 2541–2563. [Google Scholar]
- Fan, J.; Li, R. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties. J. Am. Stat. Assoc. 2001, 96, 1348–1360. [Google Scholar] [CrossRef]
- Zhang, C.H. Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 2010, 38, 894–942. [Google Scholar] [CrossRef]
- Karunamuni, R.J.; Kong, L.; Tu, W. Efficient robust doubly adaptive regularized regression with applications. Stat. Methods Med. Res. 2019, 28, 2210–2226. [Google Scholar] [CrossRef] [PubMed]
- Salibián-Barrera, M.; Wei, Y. Weighted quantile regression with nonelliptically structured covariates. Can. J. Stat. 2008, 36, 595–611. [Google Scholar] [CrossRef]
- Ranganai, E.; Mudhombo, I. Variable Selection and Regularization in Quantile Regression via Minimum Covariance Determinant Based Weights. Entropy 2021, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Peng, H. Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 2004, 32, 928–961. [Google Scholar] [CrossRef] [Green Version]
- Zou, H. The Adaptive Lasso and Its Oracle Properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef] [Green Version]
- Frommlet, F.; Nuel, G. An adaptive ridge procedure for l0 regularization. PLoS ONE 2016, 11, e0148620. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, Y. Variable selection in quantile regression. Stat. Sin. 2009, 19, 801–817. [Google Scholar]
- Zou, H.; Zhang, H.H. On the adaptive elastic-net with a diverging number of parameters. Ann. Stat. 2009, 37, 1733. [Google Scholar] [CrossRef] [Green Version]
- Rousseeuw, P. Multivariate Estimation with High Breakdown Point. Math. Stat. Appl. 1985, 8, 283–297. [Google Scholar] [CrossRef]
- Zhao, Q. Restricted regression quantiles. J. Multivar. Anal. 2000, 72, 78–99. [Google Scholar] [CrossRef] [Green Version]
- Ranganai, E. Aspects of Model Development Using Regression Quantiles and Elemental Regressions. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2007. [Google Scholar]
- Giloni, A.; Simonoff, J.S.; Sengupta, B. Robust weighted LAD regression. Comput. Stat. Data Anal. 2006, 50, 3124–3140. [Google Scholar] [CrossRef]
- Hubert, M.; Rousseeuw, P.J. Robust regression with both continuous and binary regressors. J. Stat. Plan. Inference 1997, 57, 153–163. [Google Scholar] [CrossRef]
- Pollard, D. Asymptotics for Least Absolute Deviation Regression Estimators. Econom. Theory 1991, 7, 186–199. [Google Scholar] [CrossRef]
- Knight, K. Asymptotics for L1-estimators of regression parameters under heteroscedasticityY. Can. J. Stat. 1999, 27, 497–507. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression; Econometric Society Monographs, Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Jongh, P.J.D.; de Wet, T.; Welsh, A.H. Mallows-Type Bounded-Influence-Regression Trimmed Means. J. Am. Stat. Assoc. 1988, 83, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Ranganai, E.; Vuuren, J.O.V.; Wet, T.D. Multiple Case High Leverage Diagnosis in Regression Quantiles. Commun. Stat.-Theory Methods 2014, 43, 3343–3370. [Google Scholar] [CrossRef] [Green Version]
- Arslan, O. Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression. Comput. Stat. Data Anal. 2012, 56, 1952–1965. [Google Scholar] [CrossRef]
- Yi, C. R-Add-On-Software: Hqreg. Available online: https://cloud.r-project.org/web/packages/hqreg (accessed on 20 February 2022).
- Brownlee, K.A. Statistical theory and methodology in science and engineering. In A Wiley Publication in Applied Statistics; Wiley: Hoboken, NJ, USA, 1965. [Google Scholar]
- Ruppert, D.; Carroll, R.J. Trimmed least squares estimation in the linear model. J. Am. Stat. Assoc. 1980, 75, 828–838. [Google Scholar] [CrossRef]
- Cook, R.D. Influential Observations in Linear Regression. J. Am. Stat. Assoc. 1979, 74, 169–174. [Google Scholar] [CrossRef]
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median () | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D1: N-distribution | QR-LASSO | 0.72(1.17) | 62.00 | 4.40 | 0.00 | 0.04 | |
QR-E-NET | 0.75(1.26) | 16.50 | 3.35 | 0.00 | 0.03 | ||
QR-ALASSO | 0.71(1.10) | 99.50 | 5.00 | 0.00 | 0.03 | ||
QR-AE-NET | 0.75(1.16) | 97.00 | 4.97 | 0.00 | 0.05 | ||
QR-LASSO | 2.20(3.60) | 44.00 | 4.39 | 0.28 | 0.04 | ||
QR-E-NET | 2.29(3.68) | 27.00 | 3.83 | 0.14 | 0.04 | ||
QR-ALASSO | 2.15(3.38) | 60.00 | 4.95 | 0.46 | 0.01 | ||
QR-AE-NET | 2.28(3.54) | 67.50 | 4.90 | 0.28 | 0.01 | ||
QR-LASSO | 0.02(1.16) | 65.50 | 4.51 | 0.00 | 0.04 | ||
QR-E-NET | 0.02(1.19) | 21.00 | 3.56 | 0.00 | 0.04 | ||
QR-ALASSO | 0.01(1.13) | 100.00 | 5.00 | 0.00 | 0.04 | ||
QR-AE-NET | 0.01(1.17) | 100.00 | 5.00 | 0.00 | 0.06 | ||
QR-LASSO | 0.09(3.47) | 47.50 | 4.51 | 0.22 | 0.05 | ||
QR-E-NET | 0.06(3.62) | 32.50 | 3.99 | 0.09 | 0.04 | ||
QR-ALASSO | 0.06(3.41) | 49.00 | 4.90 | 0.55 | 0.02 | ||
QR-AE-NET | 0.05(3.51) | 60.50 | 4.85 | 0.30 | 0.03 | ||
D1: t-distribution | QR-LASSO | 2.32(3.81) | 30.50 | 4.96 | 1.66 | 0.04 | |
QR-E-NET | 2.55(3.87) | 29.50 | 4.77 | 1.46 | 0.03 | ||
QR-ALASSO | 2.36(3.78) | 11.50 | 4.97 | 1.95 | 0.00 | ||
QR-AE-NET | 2.52(3.93) | 12.50 | 4.94 | 1.86 | 0.00 | ||
QR-LASSO | 4.70(7.15) | 1.50 | 5.00 | 2.93 | 0.06 | ||
QR-E-NET | 4.72(7.14) | 1.50 | 4.99 | 2.91 | 0.05 | ||
QR-ALASSO | 4.68(7.12) | 0.50 | 4.99 | 2.93 | 0.00 | ||
QR-AE-NET | 4.72(7.17) | 0.50 | 5.00 | 2.94 | 0.00 | ||
QR-LASSO | 0.03(2.91) | 40.50 | 4.96 | 1.27 | 0.04 | ||
QR-E-NET | 0.02(3.27) | 29.00 | 4.64 | 1.10 | 0.03 | ||
QR-ALASSO | −0.07(3.24) | 32.50 | 4.99 | 1.56 | 0.00 | ||
QR-AE-NET | −0.05(3.43) | 37.00 | 4.93 | 1.38 | 0.00 | ||
QR-LASSO | −0.14(6.89) | 1.50 | 4.99 | 2.85 | 0.05 | ||
QR-E-NET | −0.14(6.91) | 1.00 | 4.97 | 2.84 | 0.05 | ||
QR-ALASSO | −0.14(6.84) | 0.50 | 5.00 | 2.86 | 0.00 | ||
QR-AE-NET | −0.13(6.90) | 2.00 | 4.99 | 2.85 | 0.00 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D2: N-distribution | QR-LASSO | −1.10(5.65) | 38.00 | 4.00 | 0.01 | 0.03 | |
QR-E-NET | −0.93(5.55) | 2.50 | 2.55 | 0.00 | 0.02 | ||
QR-ALASSO | −1.08(5.60) | 91.50 | 4.92 | 0.01 | 0.02 | ||
QR-AE-NET | −0.36(5.01) | 81.50 | 4.81 | 0.00 | 0.03 | ||
QR-LASSO | 0.96(6.30) | 17.50 | 4.23 | 0.43 | 0.02 | ||
QR-E-NET | 1.25(5.85) | 9.50 | 3.39 | 0.16 | 0.02 | ||
QR-ALASSO | 0.90(6.45) | 56.50 | 4.98 | 0.48 | 0.01 | ||
QR-AE-NET | 1.35(5.64) | 72.50 | 4.93 | 0.22 | 0.02 | ||
WQR-LASSO | −1.48(4.49) | 62.50 | 4.47 | 0.00 | 0.03 | ||
WQR-E-NET | −1.56(4.61) | 11.00 | 3.34 | 0.00 | 0.03 | ||
WQR-ALASSO | −1.69(4.44) | 94.50 | 4.95 | 0.01 | 0.04 | ||
WQR-AE-NET | −1.60(4.26) | 92.00 | 4.92 | 0.00 | 0.06 | ||
WQR-LASSO | 0.50(4.63) | 29.50 | 4.53 | 0.62 | 0.03 | ||
WQR-E-NET | 0.76(4.31) | 28.00 | 4.34 | 0.54 | 0.04 | ||
WQR-ALASSO | 1.47(2.50) | 57.50 | 4.89 | 0.44 | 0.01 | ||
WQR-AE-NET | 1.50(2.53) | 53.00 | 4.76 | 0.38 | 0.01 | ||
QR-LASSO | −1.87(5.78) | 36.00 | 3.83 | 0.01 | 0.02 | ||
QR-E-NET | -1.91(5.72) | 0.00 | 1.94 | 0.00 | 0.02 | ||
QR-ALASSO | −1.91(5.76) | 98.50 | 4.99 | 0.00 | 0.03 | ||
QR-AE-NET | −1.61(5.17) | 94.00 | 4.94 | 0.00 | 0.05 | ||
QR-LASSO | −1.41(6.56) | 21.00 | 3.99 | 0.28 | 0.03 | ||
QR-E-NET | −1.34(6.21) | 4.50 | 2.53 | 0.09 | 0.02 | ||
QR-ALASSO | −1.53(6.65) | 60.00 | 4.78 | 0.25 | 0.02 | ||
QR-AE-NET | −1.17(5.97) | 34.50 | 4.19 | 0.07 | 0.02 | ||
WQR-LASSO | −2.22(4.24) | 66.50 | 4.57 | 0.00 | 0.04 | ||
WQR-E-NET | −2.04(4.39) | 30.00 | 3.86 | 0.00 | 0.04 | ||
WQR-ALASSO | −2.28(4.37) | 99.50 | 5.00 | 0.00 | 0.04 | ||
WQR-AE-NET | −2.20(4.27) | 99.00 | 4.99 | 0.00 | 0.06 | ||
WQR-LASSO | −1.06(4.49) | 36.50 | 4.69 | 0.54 | 0.04 | ||
WQR-E-NET | −0.99(4.28) | 28.00 | 4.34 | 0.37 | 0.05 | ||
WQR-ALASSO | −0.01(2.39) | 46.50 | 4.85 | 0.48 | 0.01 | ||
WQR-AE-NET | −0.03(2.49) | 36.00 | 4.61 | 0.39 | 0.01 | ||
D4: N-distribution | QR-LASSO | 0.97(1.65) | 10.00 | 3.88 | 0.61 | 0.02 | |
QR-E-NET | 2.74(3.71) | 1.00 | 1.69 | 0.16 | 0.01 | ||
QR-ALASSO | 0.88(1.50) | 65.00 | 5.00 | 0.42 | 0.01 | ||
QR-AE-NET | 2.41(3.44) | 41.00 | 4.54 | 0.16 | 0.01 | ||
QR-LASSO | 1.67(6.06) | 3.50 | 4.07 | 1.26 | 0.02 | ||
QR-E-NET | 2.64(5.30) | 0.00 | 2.25 | 0.75 | 0.01 | ||
QR-ALASSO | 2.60(7.05) | 0.00 | 4.32 | 1.69 | 0.00 | ||
QR-AE-NET | 2.83(5.13) | 0.00 | 2.86 | 1.19 | 0.00 | ||
WQR-LASSO | 0.47(0.78) | 64.50 | 4.51 | 0.00 | 0.03 | ||
WQR-E-NET | 0.49(0.85) | 30.00 | 3.96 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.52(0.77) | 99.50 | 5.00 | 0.00 | 0.03 | ||
WQR-AE-NET | 0.56(0.78) | 99.00 | 4.99 | 0.00 | 0.05 | ||
WQR-LASSO | 1.37(2.31) | 15.00 | 4.46 | 1.09 | 0.04 | ||
WQR-E-NET | 1.52(2.38) | 35.00 | 4.29 | 0.28 | 0.04 | ||
WQR-ALASSO | 1.85(2.63) | 0.00 | 5.00 | 1.58 | 0.01 | ||
WQR-AE-NET | 1.93(2.72) | 0.00 | 4.96 | 1.51 | 0.02 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D3: N-distribution | QR-LASSO | 0.65(1.21) | 60.50 | 4.45 | 0.00 | 0.01 | |
QR-E-NET | 0.81(1.46) | 12.50 | 3.48 | 0.00 | 0.01 | ||
QR-ALASSO | 0.79(1.21) | 96.50 | 5.00 | 0.06 | 0.02 | ||
QR-AE-NET | 0.87(1.35) | 99.00 | 5.00 | 0.01 | 0.02 | ||
QR-LASSO | 2.01(3.79) | 42.50 | 4.48 | 0.35 | 0.01 | ||
QR-E-NET | 2.47(4.20) | 17.50 | 3.97 | 0.43 | 0.01 | ||
QR-ALASSO | 2.17(3.49) | 74.50 | 4.75 | 0.19 | 0.00 | ||
QR-AE-NET | 2.74(4.16) | 44.50 | 4.48 | 0.42 | 0.00 | ||
WQR-LASSO | 0.48(0.91) | 28.50 | 3.83 | 0.00 | 0.04 | ||
WQR-E-NET | 0.41(0.77) | 15.50 | 3.59 | 0.00 | 0.03 | ||
WQR-ALASSO | 0.48(0.70) | 98.00 | 4.99 | 0.01 | 0.04 | ||
WQR-AE-NET | 0.50(0.82) | 98.50 | 4.99 | 0.01 | 0.04 | ||
WQR-LASSO | 1.25(2.12) | 29.00 | 4.39 | 0.57 | 0.03 | ||
WQR-E-NET | 1.46(2.31) | 24.50 | 4.21 | 0.42 | 0.04 | ||
WQR-ALASSO | 0.24(4.81) | 40.00 | 4.90 | 0.77 | 0.02 | ||
WQR-AE-NET | 0.67(4.38) | 44.00 | 4.86 | 0.68 | 0.04 | ||
QR-LASSO | −0.01(1.19) | 62.50 | 4.48 | 0.00 | 0.02 | ||
QR-E-NET | −0.04(1.39) | 12.50 | 3.45 | 0.00 | 0.02 | ||
QR-ALASSO | 0.02(1.15) | 99.50 | 5.00 | 0.00 | 0.02 | ||
QR-AE-NET | −0.01(1.43) | 97.50 | 4.98 | 0.00 | 0.03 | ||
QR-LASSO | −0.08(3.61) | 53.00 | 4.54 | 0.30 | 0.02 | ||
QR-E-NET | −0.10(4.02) | 11.00 | 3.92 | 0.54 | 0.01 | ||
QR-ALASSO | 0.06(3.55) | 74.00 | 4.80 | 0.10 | 0.00 | ||
QR-AE-NET | 0.05(3.96) | 18.50 | 4.17 | 0.35 | 0.00 | ||
WQR-LASSO | −0.01(0.67) | 71.50 | 4.65 | 0.00 | 0.04 | ||
WQR-E-NET | −0.01(0.77) | 35.00 | 3.96 | 0.00 | 0.05 | ||
WQR-ALASSO | 0.01(0.78) | 100.00 | 5.00 | 0.00 | 0.04 | ||
WQR-AE-NET | 0.01(0.81) | 100.00 | 5.00 | 0.00 | 0.07 | ||
WQR-LASSO | −0.05(2.27) | 39.50 | 4.66 | 0.48 | 0.04 | ||
WQR-E-NET | −0.05(2.30) | 31.50 | 4.38 | 0.35 | 0.04 | ||
WQR-ALASSO | −1.04(4.52) | 51.00 | 4.96 | 0.72 | 0.03 | ||
WQR-AE-NET | −0.94(4.15) | 63.00 | 4.98 | 0.48 | 0.04 | ||
D5: N-distribution | QR-LASSO | −0.06(2.34) | 54.50 | 4.98 | 0.80 | 0.00 | |
QR-E-NET | −0.02(4.67) | 0.00 | 4.97 | 2.91 | 0.09 | ||
QR-ALASSO | 0.01(1.46) | 95.50 | 5.00 | 0.07 | 0.00 | ||
QR-AE-NET | 0.00(4.66) | 0.00 | 4.99 | 2.87 | 0.09 | ||
QR-LASSO | 0.08(5.40) | 11.50 | 4.98 | 2.56 | 0.01 | ||
QR-E-NET | −0.03(5.42) | 0.00 | 4.96 | 2.92 | 0.09 | ||
QR-ALASSO | 0.07(4.74) | 26.50 | 5.00 | 1.70 | 0.00 | ||
QR-AE-NET | −0.02(5.47) | 0.00 | 4.99 | 2.95 | 0.01 | ||
WQR-LASSO | 0.01(0.70) | 68.50 | 4.61 | 0.00 | 0.04 | ||
WQR-E-NET | 0.01(0.69) | 34.50 | 3.95 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.01(0.72) | 100.00 | 5.00 | 0.00 | 0.04 | ||
WQR-AE-NET | 0.00(0.73) | 98.00 | 4.98 | 0.00 | 0.06 | ||
WQR-LASSO | 0.04(2.26) | 42.00 | 4.72 | 0.47 | 0.04 | ||
WQR-E-NET | 0.03(2.26) | 29.00 | 4.35 | 0.38 | 0.05 | ||
WQR-ALASSO | 0.00(2.28) | 17.50 | 4.99 | 0.91 | 0.01 | ||
WQR-AE-NET | −0.01(2.39) | 13.00 | 5.00 | 0.93 | 0.02 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D2: t-distribution | QR-LASSO | 2.49(4.51) | 1.50 | 4.26 | 1.50 | 0.02 | |
QR-E-NET | 3.26(5.05) | 0.00 | 2.79 | 1.32 | 0.02 | ||
QR-ALASSO | 2.43(3.87) | 24.00 | 4.93 | 1.52 | 0.01 | ||
QR-AE-NET | 2.71(4.29) | 0.00 | 3.03 | 0.78 | 0.01 | ||
QR-LASSO | 1.08(2.02) | 15.50 | 4.05 | 0.54 | 0.02 | ||
QR-E-NET | 1.75(3.09) | 0.00 | 1.30 | 0.20 | 0.02 | ||
QR-ALASSO | 1.16(2.16) | 52.00 | 4.88 | 0.76 | 0.02 | ||
QR-AE-NET | 1.45(2.38) | 0.50 | 3.27 | 0.32 | 0.03 | ||
WQR-LASSO | 1.57(2.51) | 21.50 | 4.85 | 1.65 | 0.04 | ||
WQR-E-NET | 1.61(2.60) | 4.00 | 4.35 | 1.55 | 0.04 | ||
WQR-ALASSO | 1.49(2.63) | 8.00 | 4.79 | 2.12 | 0.00 | ||
WQR-AE-NET | 1.60(2.71) | 1.00 | 4.57 | 2.16 | 0.00 | ||
WQR-LASSO | 0.81(1.41) | 46.50 | 4.74 | 0.82 | 0.04 | ||
WQR-E-NET | 0.89(1.56) | 5.00 | 3.77 | 0.74 | 0.04 | ||
WQR-ALASSO | 0.70(1.33) | 55.00 | 5.00 | 0.95 | 0.02 | ||
WQR-AE-NET | 0.79(1.42) | 51.00 | 4.90 | 0.88 | 0.03 | ||
QR-LASSO | 0.00(3.64) | 3.00 | 3.97 | 1.20 | 0.02 | ||
QR-E-NET | −0.01(4.32) | 0.00 | 2.67 | 0.92 | 0.02 | ||
QR-ALASSO | 0.08(3.26) | 42.50 | 4.97 | 1.16 | 0.01 | ||
QR-AE-NET | 0.02(3.85) | 0.50 | 3.34 | 0.74 | 0.01 | ||
QR-LASSO | −0.02(1.70) | 30.00 | 4.37 | 0.53 | 0.03 | ||
QR-E-NET | 0.01(2.49) | 0.00 | 1.64 | 0.27 | 0.02 | ||
QR-ALASSO | 0.04(1.64) | 77.00 | 5.00 | 0.54 | 0.02 | ||
QR-AE-NET | 0.01(1.98) | 2.00 | 3.34 | 0.33 | 0.02 | ||
WQR-LASSO | 0.03(2.21) | 29.50 | 4.73 | 1.14 | 0.04 | ||
WQR-E-NET | 0.02(2.30) | 9.00 | 4.11 | 1.00 | 0.04 | ||
WQR-ALASSO | 0.02(2.21) | 30.50 | 4.94 | 1.52 | 0.01 | ||
WQR-AE-NET | 0.05(2.30) | 17.00 | 4.58 | 1.40 | 0.01 | ||
WQR-LASSO | 0.01(1.15) | 51.50 | 4.67 | 0.51 | 0.04 | ||
WQR-E-NET | 0.01(1.25) | 7.00 | 3.51 | 0.46 | 0.04 | ||
WQR-ALASSO | 0.00(1.11) | 67.00 | 5.00 | 0.66 | 0.04 | ||
WQR-AE-NET | 0.00(1.22) | 69.50 | 4.98 | 0.59 | 0.07 | ||
D2: t-distribution | QR-LASSO | 0.82(1.30) | 14.00 | 3.40 | 0.01 | 0.02 | |
QR-E-NET | 1.18(1.80) | 0.00 | 1.90 | 0.00 | 0.02 | ||
QR-ALASSO | 0.84(1.30) | 90.00 | 4.90 | 0.01 | 0.02 | ||
QR-AE-NET | 1.04(1.53) | 0.00 | 2.91 | 0.00 | 0.02 | ||
QR-LASSO | 0.40(0.64) | 16.00 | 3.51 | 0.01 | 0.02 | ||
QR-E-NET | 0.62(1.02) | 0.00 | 1.90 | 0.00 | 0.02 | ||
QR-ALASSO | 0.38(0.63) | 98.00 | 4.98 | 0.00 | 0.02 | ||
QR-AE-NET | 0.63(1.03) | 0.00 | 2.28 | 0.00 | 0.02 | ||
WQR-LASSO | 0.50(0.97) | 42.00 | 4.10 | 0.00 | 0.04 | ||
WQR-E-NET | 0.51(1.00) | 1.50 | 2.72 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.55(0.91) | 92.00 | 4.92 | 0.01 | 0.03 | ||
WQR-AE-NET | 0.60(0.97) | 56.50 | 4.45 | 0.00 | 0.04 | ||
WQR-LASSO | 0.26(0.49) | 31.00 | 3.92 | 0.00 | 0.04 | ||
WQR-E-NET | 0.27(0.51) | 2.50 | 2.62 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.28(0.45) | 98.50 | 4.99 | 0.00 | 0.04 | ||
WQR-AE-NET | 0.30(0.49) | 83.50 | 4.82 | 0.00 | 0.05 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D3: t-distribution | QR-LASSO | 1.32(2.39) | 17.00 | 3.84 | 0.43 | 0.03 | |
QR-E-NET | 2.07(3.49) | 0.00 | 1.77 | 0.30 | 0.02 | ||
QR-ALASSO | 1.84(3.21) | 44.50 | 4.91 | 0.74 | 0.01 | ||
QR-AE-NET | 2.23(3.39) | 2.50 | 3.69 | 0.29 | 0.02 | ||
QR-LASSO | 0.77(1.28) | 56.00 | 4.55 | 0.25 | 0.03 | ||
QR-E-NET | 1.75(2.65) | 0.00 | 2.17 | 0.20 | 0.02 | ||
QR-ALASSO | 0.90(1.56) | 84.50 | 4.99 | 0.27 | 0.03 | ||
QR-AE-NET | 1.44(2.04) | 2.00 | 4.01 | 0.18 | 0.04 | ||
WQR-LASSO | 1.50(2.62) | 37.00 | 4.96 | 1.51 | 0.04 | ||
WQR-E-NET | 1.61(2.78) | 17.00 | 4.45 | 1.36 | 0.04 | ||
WQR-ALASSO | 1.57(2.57) | 21.50 | 4.99 | 1.78 | 0.02 | ||
WQR-AE-NET | 1.62(2.58) | 22.50 | 4.93 | 1.61 | 0.03 | ||
WQR-LASSO | 0.67(1.30) | 67.50 | 4.87 | 0.54 | 0.04 | ||
WQR-E-NET | 0.77(1.47) | 24.00 | 3.91 | 0.47 | 0.04 | ||
WQR-ALASSO | 0.88(1.52) | 55.50 | 4.99 | 0.91 | 0.03 | ||
WQR-AE-NET | 0.91(1.56) | 55.50 | 4.88 | 0.77 | 0.04 | ||
QR-LASSO | −0.02(2.39) | 28.50 | 4.30 | 0.46 | 0.06 | ||
QR-E-NET | −0.07(3.56) | 1.00 | 1.52 | 0.25 | 0.02 | ||
QR-ALASSO | 0.02(3.05) | 27.50 | 4.81 | 0.86 | 0.01 | ||
QR-AE-NET | 0.04(3.43) | 0.00 | 3.08 | 0.48 | 0.02 | ||
QR-LASSO | 0.01(1.23) | 63.00 | 4.71 | 0.31 | 0.04 | ||
QR-E-NET | 0.00(2.15) | 0.00 | 2.08 | 0.21 | 0.02 | ||
QR-ALASSO | 0.01(1.47) | 79.00 | 5.00 | 0.37 | 0.03 | ||
QR-AE-NET | 0.00(2.12) | 3.50 | 3.81 | 0.24 | 0.03 | ||
WQR-LASSO | −0.04(2.30) | 51.00 | 4.96 | 1.12 | 0.05 | ||
WQR-E-NET | −0.03(2.48) | 21.00 | 4.21 | 0.96 | 0.05 | ||
WQR-ALASSO | 0.02(2.29) | 24.50 | 4.99 | 1.46 | 0.01 | ||
WQR-AE-NET | 0.05(2.36) | 20.00 | 4.90 | 1.31 | 0.02 | ||
WQR-LASSO | −0.01(1.17) | 69.50 | 4.88 | 0.49 | 0.04 | ||
WQR-E-NET | −0.01(1.29) | 10.50 | 3.36 | 0.40 | 0.04 | ||
WQR-ALASSO | 0.01(1.16) | 69.50 | 5.00 | 0.61 | 0.03 | ||
WQR-AE-NET | 0.02(1.26) | 73.50 | 4.98 | 0.50 | 0.05 | ||
D3: t-distribution | QR-LASSO | 0.02(1.26) | 2.50 | 2.67 | 0.01 | 0.02 | |
QR-E-NET | 0.00(2.48) | 0.00 | 0.02 | 0.02 | 0.02 | ||
QR-ALASSO | 0.03(1.22) | 98.50 | 4.99 | 0.00 | 0.04 | ||
QR-AE-NET | 0.01(1.77) | 0.00 | 3.36 | 0.00 | 0.04 | ||
QR-LASSO | −0.02(0.64) | 1.50 | 2.62 | 0.0 | 0.01 | ||
QR-E-NET | −0.07(2.03) | 0.00 | 0.01 | 0.00 | 0.02 | ||
QR-ALASSO | 0.01(0.61) | 100.00 | 5.00 | 0.00 | 0.05 | ||
QR-AE-NET | 0.00(1.11) | 0.00 | 4.00 | 0.00 | 0.05 | ||
WQR-LASSO | −0.01(0.69) | 53.50 | 4.40 | 0.00 | 0.05 | ||
WQR-E-NET | −0.01(0.73) | 7.00 | 2.84 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.01(0.84) | 98.50 | 4.99 | 0.00 | 0.04 | ||
WQR-AE-NET | 0.01(0.88) | 81.00 | 4.81 | 0.00 | 0.07 | ||
WQR-LASSO | 0.00(0.33) | 47.50 | 4.26 | 0.00 | 0.05 | ||
WQR-E-NET | 0.00(0.36) | 4.00 | 2.84 | 0.00 | 0.05 | ||
WQR-ALASSO | 0.01(0.42) | 99.50 | 5.00 | 0.00 | 0.05 | ||
WQR-AE-NET | 0.01(0.43) | 93.00 | 4.93 | 0.00 | 0.08 |
Distribution | Parameter | Method | Median(MAD) Test Error | Correctly Fitted | No of Zeros | Median() | |
---|---|---|---|---|---|---|---|
c.zero | inc.zero | ||||||
D6: t-distribution | QR-LASSO | 2.54(4.43) | 22.50 | 4.71 | 1.34 | 0.04 | |
QR-E-NET | 2.79(4.69) | 3.00 | 3.06 | 0.96 | 0.04 | ||
QR-ALASSO | 2.43(4.26) | 19.50 | 4.74 | 1.19 | 0.02 | ||
QR-AE-NET | 2.71(4.66) | 0.00 | 3.82 | 1.07 | 0.02 | ||
QR-LASSO | 1.10(1.95) | 25.50 | 4.15 | 0.52 | 0.03 | ||
QR-E-NET | 1.34(2.37) | 0.00 | 2.36 | 0.44 | 0.03 | ||
QR-ALASSO | 1.15(2.14) | 37.00 | 4.73 | 0.77 | 0.03 | ||
QR-AE-NET | 1.27(2.39) | 8.00 | 4.22 | 0.45 | 0.04 | ||
WQR-LASSO | 1.63(3.05) | 14.00 | 4.66 | 1.52 | 0.04 | ||
WQR-E-NET | 1.82(3.22) | 1.00 | 3.61 | 1.07 | 0.04 | ||
WQR-ALASSO | 1.60(2.86) | 14.00 | 4.94 | 1.95 | 0.02 | ||
WQR-AE-NET | 1.75(3.06) | 11.50 | 4.80 | 1.79 | 0.04 | ||
WQR-LASSO | 1.08(1.99) | 67.00 | 4.80 | 0.38 | 0.04 | ||
WQR-E-NET | 1.27(2.23) | 1.00 | 2.45 | 0.32 | 0.03 | ||
WQR-ALASSO | 0.80(1.43) | 10.00 | 3.95 | 0.69 | 0.00 | ||
WQR-AE-NET | 0.96(1.71) | 0.50 | 2.79 | 0.66 | 0.00 | ||
QR-LASSO | −0.06(3.48) | 37.00 | 4.69 | 0.90 | 0.04 | ||
QR-E-NET | −0.06(3.72) | 1.50 | 2.67 | 0.76 | 0.04 | ||
QR-ALASSO | −0.02(3.45) | 41.50 | 4.91 | 0.87 | 0.02 | ||
QR-AE-NET | 0.06(3.82) | 2.00 | 3.99 | 0.58 | 0.03 | ||
QR-LASSO | −0.04(1.62) | 33.00 | 4.30 | 0.36 | 0.04 | ||
QR-E-NET | 0.00(1.83) | 0.00 | 2.45 | 0.33 | 0.03 | ||
QR-ALASSO | −0.01(1.81) | 64.50 | 4.96 | 0.63 | 0.04 | ||
QR-AE-NET | 0.01(1.99) | 16.00 | 4.23 | 0.31 | 0.06 | ||
WQR-LASSO | 0.04(2.47) | 26.00 | 4.65 | 1.09 | 0.04 | ||
WQR-E-NET | 0.05(2.74) | 2.50 | 3.57 | 0.81 | 0.04 | ||
WQR-ALASSO | −0.01(2.36) | 43.50 | 4.91 | 1.19 | 0.00 | ||
WQR-AE-NET | 0.00(2.64) | 3.00 | 4.45 | 1.26 | 0.03 | ||
WQR-LASSO | 0.02(1.52) | 58.50 | 4.67 | 0.33 | 0.04 | ||
WQR-E-NET | 0.03(1.78) | 0.00 | 2.02 | 0.29 | 0.04 | ||
WQR-ALASSO | −0.01(1.19) | 69.00 | 4.86 | 0.43 | 0.00 | ||
WQR-AE-NET | 0.00(1.41) | 7.50 | 3.21 | 0.40 | 0.00 | ||
D6: t-distribution | QR-LASSO | 0.82(1.25) | 53.50 | 4.26 | 0.00 | 0.04 | |
QR-E-NET | 0.86(1.35) | 3.00 | 2.44 | 0.00 | 0.03 | ||
QR-ALASSO | 0.81(1.25) | 96.00 | 4.96 | 0.00 | 0.03 | ||
QR-AE-NET | 0.88(1.29) | 38.50 | 4.22 | 0.00 | 0.04 | ||
QR-LASSO | 0.40(0.66) | 63.50 | 4.51 | 0.00 | 0.04 | ||
QR-E-NET | 0.41(0.72) | 2.50 | 2.77 | 0.00 | 0.04 | ||
QR-ALASSO | 0.38(0.62) | 97.50 | 4.97 | 0.00 | 0.03 | ||
QR-AE-NET | 0.40(0.66) | 26.00 | 4.15 | 0.00 | 0.05 | ||
WQR-LASSO | 0.54(0.92) | 43.00 | 4.23 | 0.00 | 0.04 | ||
WQR-E-NET | 0.55(0.96) | 2.00 | 3.07 | 0.00 | 0.04 | ||
WQR-ALASSO | 0.37(0.69) | 98.00 | 4.98 | 0.00 | 0.03 | ||
WQR-AE-NET | 0.40(0.73) | 59.00 | 4.52 | 0.00 | 0.05 | ||
WQR-LASSO | 0.26(0.47) | 35.50 | 4.06 | 0.00 | 0.04 | ||
WQR-E-NET | 0.25(0.51) | 5.00 | 3.16 | 0.00 | 0.03 | ||
WQR-ALASSO | 0.25(0.42) | 99.50 | 5.00 | 0.00 | 0.04 | ||
WQR-AE-NET | 0.27(0.43) | 83.50 | 4.84 | 0.00 | 0.06 |
NON-BIASED | QR-LASSO | QR-E-NET | QR-ALASSO | QR-AE-NET | |||
---|---|---|---|---|---|---|---|
0.01 | 0.01 | 0.07 | 0.02 | ||||
intercept | −0.72 | −1.11(0.39) | −0.60(−0.12) | −0.69(−0.03) | −0.72(0.00) | −0.67(−0.05) | |
50.00 | 15.15(−34.85) | 33.20(−16.80) | 21.63(−28.37) | 17.55(−32.45) | 24.53(−25.47) | ||
0.00 | 84.78(84.78) | 10.34(10.34) | 14.14(14.14) | 26.40(26.40) | 27.17(27.17) | ||
0.00 | −89.20(−89.20) | 0.00(0.00) | 0.00(0.00) | −20.53(−20.53) | −26.10(−26.10) | ||
10.00 | 28.94(18.94) | 14.18(4.18) | 19.48(9.48) | 27.98(17.98) | 25.27(15.27) | ||
15.00 | 30.54(15.54) | 16.51(1.51) | 18.57(3.57) | 22.19(7.19) | 22.54(7.54) | ||
0.00 | 10.21(10.21) | −4.28(−4.28) | −4.75(−4.75) | −0.78(−0.78) | 0.57(0.57) | ||
0.08 | 0.03 | 0.32 | 0.10 | ||||
intercept | 0.00 | 0.40(0.40) | 0.44(0.44) | 0.39(0.39) | 0.57(0.57) | 0.53(0.53) | |
50.00 | 38.47(−11.53) | 9.68(−40.32) | 16.28(−33.72) | 27.98(−22.02) | 16.09(−33.91) | ||
0.00 | 41.62(41.62) | 33.30(33.30) | 17.72(17.72) | 35.97(35.97) | 21.51(21.51) | ||
0.00 | −37.77(−37.77) | 0.00(0.00) | 8.14(8.14) | 0.00(0.00) | 0.00(0.00) | ||
10.00 | 12.73(2.73) | 21.57(11.57) | 18.00(8.00) | 5.43(−4.57) | 21.60(11.60) | ||
15.00 | 19.06(4.06) | 6.02(−8.98) | 12.42(−2.58) | 1.56(−13.44) | 13.52(−1.48) | ||
0.00 | 4.21(4.21) | 0.00(0.00) | −3.06(−3.06) | 0.00(0.00) | −0.90(−0.90) | ||
WQR-LASSO | WQR-E-NET | WQR-ALASSO | WQR-AE-NET | ||||
0.01 | 0.01 | 0.00 | 0.00 | ||||
intercept | −0.72 | −1.11(0.39) | −0.10(−0.62) | −0.08(−0.64) | −0.07(−0.65) | −0.23(−0.49) | |
50.00 | 15.15(−34.85) | 35.34(−14.66) | 26.98(−23.02) | 44.01(−5.99) | 51.84(1.84) | ||
0.00 | 84.78(84.78) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | −15.12(−15.12) | ||
0.00 | −89.20(−89.20) | 0.00(0.00) | 0.25(0.25) | 0.00(0.00) | −14.00(−14.00) | ||
10.00 | 28.94(18.94) | 16.13(6.13) | 22.52(12.52) | 10.23(0.23) | 20.28(10.28) | ||
15.00 | 30.54(15.54) | 25.85(10.85) | 27.79(12.79) | 23.02(8.02) | 35.00(20.00) | ||
0.00 | 10.21(10.21) | −9.56(−9.56) | −10.65(−10.65) | −8.81(−8.81) | −7.73(−7.73) | ||
0.04 | 0.00 | 0.97 | 0.42 | ||||
intercept | 0.00 | 0.40(0.40) | 0.01(0.01) | 0.02(0.02) | 0.01(0.01) | 0.01(0.01) | |
50.00 | 38.47(−11.53) | 49.19(−0.81) | 41.15(−8.85) | 54.16(4.16) | 20.42(−29.58) | ||
0.00 | 41.62(41.62) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 10.97(10.97) | ||
0.00 | −37.77(−37.77) | 0.00(0.00) | −5.85(−5.85) | 0.00(0.00) | 6.34(6.34) | ||
10.00 | 12.73(2.73) | 0.00(−10.00) | 18.47(8.47) | 0.80(−9.20) | 17.20(7.20) | ||
15.00 | 19.06(4.06) | 14.63(−0.37) | 21.20(6.20) | 18.96(3.96) | 18.26(3.26) | ||
0.00 | 4.21(4.21) | 0.00(0.00) | 4.58(4.58) | 0.00(0.00) | 0.00(0.00) |
NON-BIASED | QR-LASSO | QR-E-NET | QR-ALASSO | QR-AE-NET | |||
---|---|---|---|---|---|---|---|
0.00 | 0.00 | 0.01 | 0.00 | ||||
intercept | −0.72 | 0.38(−1.10) | −0.85(0.13) | −0.85(0.13) | −0.98(0.26) | −0.69(0.03) | |
0.00 | −0.14(0.14) | −0.02(0.02) | 0.00(0.00) | 0.00(0.00) | −0.19(0.19) | ||
8.00 | 9.29(−1.29) | 4.37(3.63) | 4.89(3.11) | 2.97(5.03) | 7.73(0.27) | ||
−13.00 | −10.97(−2.03) | 0.00(−13.00) | −2.00(−11.00) | −6.35(−6.65) | −9.59(−3.41) | ||
0.00 | 11.54(−11.54) | 0.87(−0.87) | 3.01(−3.01) | 6.68(−6.68) | 10.09(−10.09) | ||
0.00 | 6.21(−6.21) | 1.62(−1.62) | 2.09(−2.09) | 0.00(0.00) | 4.90(−4.90) | ||
6.00 | 1.61(4.39) | 2.22(3.78) | 2.19(3.81) | 3.30(2.70) | 1.74(4.26) | ||
0.01 | 0.02 | 0.01 | 0.01 | ||||
intercept | 0.00 | 0.44(−0.44) | 0.03(−0.03) | 0.03(−0.03) | 0.14(−0.14) | 0.07(-0.07) | |
0.00 | 0.72(−0.72) | 0.40(−0.40) | 0.41(−0.41) | 0.00(0.00) | 0.00(0.00) | ||
8.00 | 9.87(−1.87) | 10.13(−2.13) | 10.13(−2.13) | 7.83(0.17) | 8.21(−0.21) | ||
−13.00 | −5.15(−7.85) | −4.80(−8.20) | −4.80(−8.20) | −0.98(−12.02) | −8.41(−4.59) | ||
0.00 | 4.68(−4.68) | 4.38(−4.38) | 4.38(−4.38) | 0.00(0.00) | 6.89(−6.89) | ||
0.00 | 3.64(−3.64) | 3.71(−3.71) | 3.71(−3.71) | 0.00(0.00) | 0.81(−0.81) | ||
6.00 | 4.94(1.06) | 4.92(1.08) | 4.91(1.09) | 6.24(−0.24) | 4.31(1.69) | ||
WQR-LASSO | WQR-E-NET | WQR-ALASSO | WQR-AE-NET | ||||
0.04 | 0.04 | 0.05 | 0.06 | ||||
intercept | −0.72 | 0.38(−1.10) | −0.16(−0.56) | −0.10(−0.62) | −0.11(−0.61) | −0.11(−0.61) | |
0.00 | −0.14(0.14) | −2.31(2.31) | −2.44(2.44) | 0.00(0.00) | 0.00(0.00) | ||
8.00 | 9.29(−1.29) | 8.33(−0.33) | 9.01(−1.01) | 6.43(1.57) | 6.44(1.56) | ||
−13.00 | −10.97(−2.03) | 0.00(−13.00) | 0.00(−13.00) | −0.50(−12.50) | −0.52(−12.48) | ||
0.00 | 11.54(−11.54) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | ||
0.00 | 6.21(−6.21) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | ||
6.00 | 1.61(4.39) | 9.03(−3.03) | 9.33(−3.33) | 8.42(−2.42) | 8.42(−2.42) | ||
0.04 | 0.04 | 0.01 | 0.03 | ||||
intercept | 0.00 | 0.44(−0.44) | −0.01(0.01) | 0.00(0.00) | 0.00(0.00) | −0.01(0.01) | |
0.00 | 0.72(−0.72) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | ||
8.00 | 9.87(−1.87) | 7.48(0.52) | 6.27(1.73) | 8.37(−0.37) | 8.44(−0.44) | ||
−13.00 | −5.15(−7.85) | −5.75(−7.25) | −5.99(−7.01) | −9.29(−3.71) | −9.67(−3.33) | ||
0.00 | 4.68(−4.68) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | ||
0.00 | 3.64(−3.64) | −0.18(0.18) | −1.19(1.19) | 0.00(0.00) | 0.00(0.00) | ||
6.00 | 4.94(1.06) | 10.68(−4.68) | 11.21(−5.21) | 11.38(−5.38) | 11.32(−5.32) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mudhombo, I.; Ranganai, E. Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET. Computation 2022, 10, 203. https://doi.org/10.3390/computation10110203
Mudhombo I, Ranganai E. Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET. Computation. 2022; 10(11):203. https://doi.org/10.3390/computation10110203
Chicago/Turabian StyleMudhombo, Innocent, and Edmore Ranganai. 2022. "Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET" Computation 10, no. 11: 203. https://doi.org/10.3390/computation10110203
APA StyleMudhombo, I., & Ranganai, E. (2022). Robust Variable Selection and Regularization in Quantile Regression Based on Adaptive-LASSO and Adaptive E-NET. Computation, 10(11), 203. https://doi.org/10.3390/computation10110203