Analysis of Electrical Models for Photovoltaic Cells under Uniform and Partial Shading Conditions
Abstract
:1. Introduction
2. Methods
2.1. Single Diode Model
2.2. The Bishop Model
2.3. Direct–Reverse Model
2.4. PV Panel/Array Modeling
3. Proposed Parameter Estimation Technique
3.1. Initial Population
3.2. Selection
3.3. Crossover
3.4. Mutation
3.5. Population Update
3.6. Stopping Criterion
Algorithm 1: Pseudocode of GA applied to PV cell parameter estimation. |
3.7. Fitness Function
3.8. Problem Constrains
4. Results and Discussion
- Short-circuit current A
- Open-circuit voltage V
- Maximum power current A
- Maximum power voltage V
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. Renewables 2020. 2020. Available online: https://www.iea.org/reports/renewables-2020/solar-pv (accessed on 15 September 2021).
- Abo-Sennah, M.; El-Dabah, M.; Mansour, A.E.B. Maximum power point tracking techniques for photovoltaic systems: A comparative study. Int. J. Electr. Comput. Eng. 2021, 11, 57–73. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, J.; Cheng, X.; Niu, H.; Luo, X. A new and simple split series strings approach for adding bypass diodes in shingled cells modules to reduce shading loss. Sol. Energy 2019, 184, 497–507. [Google Scholar] [CrossRef]
- Jordehi, A.R. Parameter estimation of solar photovoltaic (PV) cells: A review. Renew. Sustain. Energy Rev. 2016, 61, 354–371. [Google Scholar] [CrossRef]
- Bradaschia, F.; Cavalcanti, M.C.; do Nascimento, A.J.; da Silva, E.A.; de Souza Azevedo, G.M. Parameter identification for PV modules based on an environment-dependent double-diode model. IEEE J. Photovolt. 2019, 9, 1388–1397. [Google Scholar] [CrossRef]
- Bishop, J. Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits. Sol. Cells 1988, 25, 73–89. [Google Scholar] [CrossRef]
- Zegaoui, A.; Petit, P.; Aillerie, M.; Sawicki, J.P.; Charles, J.P. Experimental validation of photovoltaic direct and reverse mode model. Influence of partial shading. Energy Procedia 2012, 18, 1247–1253. [Google Scholar] [CrossRef]
- Gao, S.; Wang, K.; Tao, S.; Jin, T.; Dai, H.; Cheng, J. A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models. Energy Convers. Manag. 2021, 230, 113784. [Google Scholar] [CrossRef]
- El-Fergany, A.A. Parameters identification of PV model using improved slime mould optimizer and Lambert W-function. Energy Rep. 2021, 7, 875–887. [Google Scholar] [CrossRef]
- Montano, J.; Tobón, A.; Villegas, J.; Durango, M. Grasshopper optimization algorithm for parameter estimation of photovoltaic modules based on the single diode model. Int. J. Energy Environ. Eng. 2020, 11, 367–375. [Google Scholar] [CrossRef]
- Huang, Y.C.; Huang, C.M.; Chen, S.J.; Yang, S.P. Optimization of module parameters for PV power estimation using a hybrid algorithm. IEEE Trans. Sustain. Energy 2019, 11, 2210–2219. [Google Scholar] [CrossRef]
- Alamri, H.R.; Rezk, H.; Abd-Elbary, H.; Ziedan, H.A.; Elnozahy, A. Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic SiO2 Nanomaterial. Coatings 2020, 10, 503. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Z.; Li, S. Parameters extraction of photovoltaic models using triple-phase teaching-learning-based optimization. IEEE Access 2020, 8, 69937–69952. [Google Scholar] [CrossRef]
- Chen, X.; Yue, H.; Yu, K. Perturbed stochastic fractal search for solar PV parameter estimation. Energy 2019, 189, 116247. [Google Scholar] [CrossRef]
- Zhang, H.; Heidari, A.A.; Wang, M.; Zhang, L.; Chen, H.; Li, C. Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules. Energy Convers. Manag. 2020, 211, 112764. [Google Scholar] [CrossRef]
- Shankar, N.; Saravanakumar, N. Solar photovoltaic module parameter estimation with an enhanced differential evolutionary algorithm using the manufacturer’s datasheet information. Optik 2020, 224, 165700. [Google Scholar]
- Montoya, O.D.; Ramírez-Vanegas, C.A.; Grisales-Norena, L.F. Parametric estimation in photovoltaic modules using the crow search algorithm. Int. J. Electr. Comput. Eng. 2022, 12, 82. [Google Scholar] [CrossRef]
- Mathew, D.; Rani, C.; Kumar, M.R.; Wang, Y.; Binns, R.; Busawon, K. Wind-driven optimization technique for estimation of solar photovoltaic parameters. IEEE J. Photovolt. 2017, 8, 248–256. [Google Scholar] [CrossRef]
- Hamid, N.; Abounacer, R.; Idali Oumhand, M.; Feddaoui, M.; Agliz, D. Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover. Int. J. Ambient. Energy 2019, 40, 517–524. [Google Scholar] [CrossRef]
- Kumar, M.; Shiva Krishna Rao K, D.V. Modelling and Parameter Estimation of Solar Cell using Genetic Algorithm. In Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 15–17 May 2019; pp. 383–387. [Google Scholar] [CrossRef]
- Tang, C.; Zhou, H. Inverse modelling of PV power prediction based on GA method. IOP Conf. Ser. Earth Environ. Sci. 2021, 675, 012080. [Google Scholar] [CrossRef]
- Marinov, A.; Zahariev, S.; Ivanov, I.; Papanchev, T. Genetic algorithm for generation of PV panel curves from datasheets. In Proceedings of the 2021 17th Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 1–4 July 2021; pp. 1–4. [Google Scholar]
- Montano, J.J.; Noreña, L.F.G.; Tobon, A.F.; Montoya, D.G. Estimation of the parameters of the mathematical model of an equivalent diode of a photovoltaic panel using a continuous genetic algorithm. IEEE Lat. Am. Trans. 2022, 20, 616–623. [Google Scholar] [CrossRef]
- Yang, Z.; Liao, K.; Chen, J.; Xia, L.; Luo, X. Output performance analysis and power optimization of different configurations half-cell modules under partial shading. Optik 2021, 232, 166499. [Google Scholar] [CrossRef]
- Seapan, M.; Hishikawa, Y.; Yoshita, M.; Okajima, K. Detection of shading effect by using the current and voltage at maximum power point of crystalline silicon PV modules. Sol. Energy 2020, 211, 1365–1372. [Google Scholar] [CrossRef]
- Mahammed, I.H.; Arab, A.H.; Bakelli, Y.; Khennene, M.; Oudjana, S.H.; Fezzani, A.; Zaghba, L. Outdoor study of partial shading effects on different PV modules technologies. Energy Procedia 2017, 141, 81–85. [Google Scholar] [CrossRef]
- Zegaoui, A.; Boutoubat, M.; Sawicki, J.P.; Kessaissia, F.Z.; Djahbar, A.; Aillerie, M. Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes. AIP Conf. Proc. 2018, 1968, 030015. [Google Scholar]
- Koffi, H.; Kuditcher, A.; Kakane, V.; Armah, E.; Yankson, A.; Amuzu, J. The Shockley five-parameter model of a solar cell: A short note. Afr. J. Sci. Technol. Innov. Dev. 2015, 7, 491–494. [Google Scholar] [CrossRef]
- Boylestad, R.L.; Nashelsky, L. Electronic Devices and Circuit Theory; Pearson Educación: London, UK, 2002. [Google Scholar]
- Zegaoui, A.; Petit, P.; Aillerie, M.; Sawicki, J.; Belarbi, A.; Krachai, M.; Charles, J. Photovoltaic cell/panel/array characterizations and modeling considering both reverse and direct modes. Energy Procedia 2011, 6, 695–703. [Google Scholar] [CrossRef]
- Petit, P.; Zégaoui, A.; Aillerie, M.; Sawicki, J.P.; Charles, J.P. The Transistor based Direct and Reverse Mode model for photovoltaic strings and panels. Energy Procedia 2012, 18, 1240–1246. [Google Scholar] [CrossRef] [Green Version]
- Ishaque, K.; Salam, Z. An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy 2011, 85, 2349–2359. [Google Scholar] [CrossRef]
- Luo, X.; Cao, L.; Wang, L.; Zhao, Z.; Huang, C. Parameter identification of the photovoltaic cell model with a hybrid Jaya-NM algorithm. Optik 2018, 171, 200–203. [Google Scholar] [CrossRef]
- Ghani, F.; Fernandez, E.; Almonacid, F.; O’Donovan, T. The numerical computation of lumped parameter values using the multi-dimensional Newton-Raphson method for the characterisation of a multi-junction CPV module using the five-parameter approach. Sol. Energy 2017, 149, 302–313. [Google Scholar] [CrossRef]
- Jain, A.; Kapoor, A. Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater. Sol. Cells 2004, 81, 269–277. [Google Scholar] [CrossRef]
- Premkumar, M.; Subramaniam, U.; Babu, T.S.; Elavarasan, R.M.; Mihet-Popa, L. Evaluation of mathematical model to characterize the performance of conventional and hybrid PV array topologies under static and dynamic shading patterns. Energies 2020, 13, 3216. [Google Scholar] [CrossRef]
- Kang, T.; Yao, J.; Jin, M.; Yang, S.; Duong, T. A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models. Energies 2018, 11, 1060. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.H.; Ko, J.W.; Kang, G.H.; Ahn, H.K. Output characteristics of PV module considering partially reverse biased conditions. Sol. Energy 2013, 92, 214–220. [Google Scholar] [CrossRef]
- King, D.; Dudley, J.; Boyson, W. PVSIM©: A Simulation Program for Photovoltaic Cells, Modules, and Arrays; Technical Report; Sandia National Labs.: Albuquerque, NM, USA, 1996. [Google Scholar]
- Quaschning, V.; Hanitsch, R. Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells. Sol. Energy 1996, 56, 513–520. [Google Scholar] [CrossRef]
- Bastidas-Rodriguez, J.D.; Petrone, G.; Ramos-Paja, C.A.; Spagnuolo, G. A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel. Math. Comput. Simul. 2017, 131, 38–54. [Google Scholar] [CrossRef]
- Chin, V.J.; Salam, Z.; Ishaque, K. An accurate and fast computational algorithm for the two-diode model of PV module based on a hybrid method. IEEE Trans. Ind. Electron. 2017, 64, 6212–6222. [Google Scholar] [CrossRef]
- Kumar, J.; Parhyar, N.R.; Panjwani, M.K.; Khan, D. Design and performance analysis of PV grid-tied system with energy storage system. Int. J. Electr. Comput. Eng. 2021, 11, 1077. [Google Scholar] [CrossRef]
Parameter | Minimum Value | Maximum Value |
---|---|---|
[A] | [A] | |
[A] | [A] | |
A | 4 | |
[V] | [V] | |
m | 2 | 8 |
a |
Variable | Individual per Population | Number of Iterations |
---|---|---|
SDM | 60 | 1500 |
Bishop | 5 | 500 |
DRM | 60 | 500 |
Parameter | SDM | Bishop | DRM |
---|---|---|---|
[A] | |||
A] | |||
A | |||
[V] | - | - | |
m | - | - | |
a | - | - | |
RMSE | |||
MAPE | |||
Time [s] |
Parameter | SDM | Bishop | DRM |
---|---|---|---|
[A] | |||
A] | |||
A | |||
[V] | - | - | |
m | - | - | |
a | - | - |
Parameter | SDM | Bishop | DRM |
---|---|---|---|
[A] | |||
[V] | |||
[A] | |||
[V] | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Restrepo-Cuestas, B.J.; Durango-Flórez, M.; Trejos-Grisales, L.A.; Ramos-Paja, C.A. Analysis of Electrical Models for Photovoltaic Cells under Uniform and Partial Shading Conditions. Computation 2022, 10, 111. https://doi.org/10.3390/computation10070111
Restrepo-Cuestas BJ, Durango-Flórez M, Trejos-Grisales LA, Ramos-Paja CA. Analysis of Electrical Models for Photovoltaic Cells under Uniform and Partial Shading Conditions. Computation. 2022; 10(7):111. https://doi.org/10.3390/computation10070111
Chicago/Turabian StyleRestrepo-Cuestas, Bonie Johana, Mariana Durango-Flórez, Luz Adriana Trejos-Grisales, and Carlos Andrés Ramos-Paja. 2022. "Analysis of Electrical Models for Photovoltaic Cells under Uniform and Partial Shading Conditions" Computation 10, no. 7: 111. https://doi.org/10.3390/computation10070111
APA StyleRestrepo-Cuestas, B. J., Durango-Flórez, M., Trejos-Grisales, L. A., & Ramos-Paja, C. A. (2022). Analysis of Electrical Models for Photovoltaic Cells under Uniform and Partial Shading Conditions. Computation, 10(7), 111. https://doi.org/10.3390/computation10070111