Performance Analysis and Optimization of a Channeled Photovoltaic Thermal System with Fin Absorbers and Combined Bi-Fluid Cooling
Abstract
:1. Introduction
2. Materials and Modeling
2.1. Description of the PVT System
2.2. Thermal Modeling
2.2.1. The Convection Heat Transfer Coefficient
2.2.2. The Radiative Heat Transfer Coefficient
2.2.3. The Conduction Heat Transfer Coefficient
2.3. Heat Exchange Modeling
- The physical properties of the materials are constant.
- The energy transfer is quasi-steady.
- The airflow velocity along the collector is not influenced by the geometry of the duct.
- The junction temperature of the fin absorbers is equal to the temperature of the fins at both the bottom and the top.
- The temperature gradient within each layer is only in the direction of the airflow.
- A uniform heat transfer coefficient (Ufin) is applied over the entire fin surface, assuming that the fin absorber material is homogeneous.
3. Methodology and Approach
3.1. Methodology
- The geometry of the hybrid collector involves its structure and operation to achieve energy efficiency, maximize the production of thermal and electrical power, and minimize the internal temperature of the system.
- A modeling optimization technique for the PVT system consists of adding twenty finned absorbers to recover the most heat produced by the system.
- Heat transfer mechanisms were examined to establish the ideal internal temperature conditions for the system when working.
- The combination of bi-fluid (air/water+TiO2) is identified as the most effective internal cooling solution for the system under investigation.
3.2. Performance Study Approach
3.2.1. Thermal Efficiency
3.2.2. Electrical Efficiency
3.2.3. Overall Efficiency
4. Result and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | surface area of the hybrid collector | m2 |
C | specific heat | J·Kg−1·K−1 |
F | packing factor | dimensionless |
G | solar radiation | W·m−2 |
h | heat transfer coefficient | W·m−2·K−1 |
M | mass | Kg |
T | temperature | K |
t | time | s |
m | mass flow rate | Kg·s−1 |
V | speed | m·s−1 |
Nu | Nusselt number | dimensionless |
Pr | Prandtl number | dimensionless |
Re | Reynold number | dimensionless |
Greek symbols | ||
α | absorption coefficient | dimensionless |
β | solar cell temperature coefficient | K−1 |
σ | density | Kg·m−3 |
τ | transmittance | dimensionless |
efficiency | dimensionless | |
ε | emissivity | dimensionless |
thickness | m | |
Stefan–Boltzmann constant | W·m−2·K−4 | |
heat thermal conductivity | W·m−1·K−1 | |
Subscripts | ||
a | ambient | |
ab | fin absorbers | |
c | solar cell | |
cd | conduction | |
cv | convection | |
el | electrical | |
f | transfer fluid | |
g | glass cover | |
gr | ground | |
ra | radiative | |
th | thermal |
References
- Mittal, A.; Brajpuriya, R.; Gupta, R. Solar steam generation using hybrid nanomaterials to address global environmental pollution and water shortage crisis. Mater. Today Sustain. 2023, 21, 100319. [Google Scholar] [CrossRef]
- Wu, G.; Fang, H.; Zhang, Y.; Li, K.; Xu, D. Photothermal and Photovoltaic Utilization for Improving the Thermal Environment of Chinese Solar Greenhouses: A Review. Energies 2023, 16, 6816. [Google Scholar] [CrossRef]
- Khodadadi, M.; Sheikholeslami, M. Review on poly-generation application of photovoltaic/thermal systems. Sustain. Energy Technol. Assess. 2022, 52, 102172. [Google Scholar] [CrossRef]
- Kang, A.; Korolija, I.; Rovas, D. Photovoltaic Thermal District Heating: A review of the current status, opportunities and prospects. Appl. Therm. Eng. 2022, 217, 119051. [Google Scholar] [CrossRef]
- Bandaru, S.H.; Becerra, V.; Khanna, S.; Radulovic, J.; Hutchinson, D.; Khusainov, R. A review of photovoltaic thermal (PVT) technology for residential applications: Performance indicators, progress, and opportunities. Energies 2021, 14, 3853. [Google Scholar] [CrossRef]
- Chala, G.T.; Al Alshaikh, S.M. Solar photovoltaic energy as a promising enhanced share of clean energy sources in the future a comprehensive review. Energies 2023, 16, 7919. [Google Scholar] [CrossRef]
- Shao, N.; Ma, L.; Zhang, J. Experimental study on electrical and thermal performance and heat transfer characteristic of PV/T roof in summer. Appl. Therm. Eng. 2019, 162, 114276. [Google Scholar] [CrossRef]
- Tuncer, A.D.; Khanlari, A.; Afshari, F.; Sözen, A.; Çiftçi, E.; Kusun, B.; Şahinkesen, İ. Experimental and numerical analysis of a grooved hybrid photovoltaic-thermal solar drying system. Appl. Therm. Eng. 2023, 218, 119288. [Google Scholar] [CrossRef]
- Aghakhani, S.; Afrand, M. Experimental study of the effect of simultaneous application of the air-and water-cooled flow on efficiency in a Photovoltaic thermal solar collector with porous plates. Appl. Therm. Eng. 2022, 217, 119161. [Google Scholar] [CrossRef]
- Shahsavar, A.; Arıcı, M. Multi-objective energy and exergy optimization of hybrid building-integrated heat pipe photovoltaic/thermal and earth air heat exchanger system using soft computing technique. Eng. Anal. Bound. Elem. 2023, 148, 293–304. [Google Scholar] [CrossRef]
- Yao, W.; Kong, X.; Han, X.; Wang, Y.; Cao, J.; Gao, W. Research on the efficiency evaluation of heat pipe PV/T systems and its applicability in different regions of China. Energy Convers. Manag. 2022, 269, 116136. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, B.; Ao, X.; Yang, H.; Ren, X.; Yu, Q.; Pei, G. Performance analysis of the aerogel-based PV/T collector: A numerical study. Sol. Energy 2021, 228, 339–348. [Google Scholar] [CrossRef]
- Yuan, W.; Ji, J.; Li, Z.; Zhou, F.; Ren, X.; Zhao, X.; Liu, S. Comparison study of the performance of two kinds of photovoltaic/thermal (PV/T) systems and a PV module at high ambient temperature. Energy 2018, 148, 1153–1161. [Google Scholar] [CrossRef]
- Kumar, S.; Thakur, R.; Singhy, A.; Tripathi, R.K.; Sethi, M. A review of heat removal mechanism in concentrated PVT systems using beam splitter. Mater. Today Proc. 2022, 50, 952–961. [Google Scholar] [CrossRef]
- Hamzat, A.K.; Sahin, A.Z.; Omisanya, M.I.; Alhems, L.M. Advances in PV and PVT cooling technologies: A review. Sustain. Energy Technol. Assess. 2021, 47, 101360. [Google Scholar] [CrossRef]
- Pomianowski, M.Z.; Johra, H.; Marszal, P.A.; Zhang, C. Sustainable and energy-efficient domestic hot water systems: A review. Renew. Sustain. Energy Rev. 2020, 128, 109900. [Google Scholar] [CrossRef]
- Bassam, A.M.; Sopian, K.; Ibrahim, A.; Al-Aasam, A.B.; Dayer, M. Experimental analysis of photovoltaic thermal collector (PVT) with nano PCM and micro-fins tube counterclockwise twisted tape nanofluid. Case Stud. Therm. Eng. 2023, 45, 102883. [Google Scholar] [CrossRef]
- Miglioli, A.; Aste, N.; Del Pero, C.; Leonforte, F. Photovoltaic-thermal solar-assisted heat pump systems for building applications: Integration and design methods. Energy Built Environ. 2023, 4, 39–56. [Google Scholar] [CrossRef]
- Yu, Q.; Chan, S.; Chen, K.; Zhao, B.; Ren, X.; Pei, G. Numerical and experimental study of a novel vacuum Photovoltaic/thermal (PV/T) collector for efficient solar energy harvesting. Appl. Therm. Eng. 2024, 236, 121580. [Google Scholar] [CrossRef]
- TPV Solar. Available online: https://www.tvpsolar.com/attach/MT-Power%20Datasheet%20(v4%20SK).pdf (accessed on 27 June 2024).
- Herrando, M.; Pantaleo, A.M.; Wang, K.; Markides, C.N. Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications. Renew. Energy 2019, 143, 637–647. [Google Scholar] [CrossRef]
- Calise, F.; d’Accadia, M.D.; Vanoli, L. Design and dynamic simulation of a novel solar trigeneration system based on hybrid photovoltaic/thermal collectors (PVT). Energy Convers. Manag. 2012, 60, 214–225. [Google Scholar] [CrossRef]
- Calise, F.; d’Accadia, M.D.; Piacentino, A. A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment. Energy 2014, 67, 129–148. [Google Scholar] [CrossRef]
- Gao, D.; Gao, G.; Cao, J.; Zhong, S.; Ren, X.; Dabwan, Y.N.; Pei, G. Experimental and numerical analysis of an efficiently optimized evacuated flat plate solar collector under medium temperature. Appl. Energy 2020, 269, 115129. [Google Scholar] [CrossRef]
- Oyieke, A.Y.; Inambao, F.L. Performance Characterisation of a Hybrid Flat-Plate Vacuum Insulated Photovoltaic/Thermal Solar Power Module in Subtropical Climate. Int. J. Photoenergy 2016, 1, 6145127. [Google Scholar] [CrossRef]
- Banakar, A.; Motevali, A.; Emad, M.; Ghobadian, B. Co-generation of heat and power in a thermoelectric system equipped with Fresnel lens collectors using active and passive cooling techniques. Renew. Energy 2017, 112, 268–279. [Google Scholar] [CrossRef]
- Karimi, F.; Xu, H.; Wang, Z.; Chen, J.; Yang, M. Experimental study of a concentrated PV/T system using linear Fresnel lens. Energy 2017, 123, 402–412. [Google Scholar] [CrossRef]
- Hussain, M.I.; Kim, J.T. Energy and economic potential of a concentrated photovoltaic/thermal (CPV/T) system for buildings in South Korea. J. Asian Archit. Build. Eng. 2019, 18, 139–144. [Google Scholar] [CrossRef]
- Singhy, A.; Thakur, R.; Kumar, R. Experimental analysis for co-generation of heat and power with convex lens as SOE and linear Fresnel Lens as POE using active water stream. Renew. Energy 2021, 163, 740–754. [Google Scholar] [CrossRef]
- Nasri, H.; Sahlaoui, K.; Oueslati, H.; Taghouti, H.; Mami, A. Experimental Comparative Study between PV Solar Collector and Hybrid PV/T Air Collector. In Proceedings of the 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Tunis, Tunisia, 26–28 October 2022. [Google Scholar]
- Nasri, H.; Riahi, J.; Vergura, S.; Taghouti, H. Experimental Validation of the Electrical Performance for PVT Air Collector. In Proceedings of the 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16–17 November 2023. [Google Scholar]
- Acciani, G.; Chiarantoni, E.; Fornarelli, G.; Vergura, S. A Feature Extraction Unsupervised Neural Network for Environmental Data Set. Neural Netw. 2003, 16, 427–436. [Google Scholar] [CrossRef]
- Puliafito, V.; Vergura, S.; Carpentieri, M. Fourier, Wavelet and Hilbert-Huang Transforms for Studying Electrical Users in the Time and Frequency Domain. Energies 2017, 10, 188. [Google Scholar] [CrossRef]
- Zivieri, R.; Vergura, S.; Carpentieri, M. Analytical and numerical solution to the nonlinear cubic Duffing equation: An application to electrical signal analysis of distribution lines. Appl. Math. Model. 2016, 40, 9152–9164. [Google Scholar] [CrossRef]
- Rejeb, O.; Dhaou, H.; Jemni, A. A numerical investigation of a photovoltaic thermal (PV/T) collector. Renew. Energy 2015, 77, 43–50. [Google Scholar] [CrossRef]
- Sahlaoui, K.; Oueslati, H.; Belkhiria, F.; Gammoudi, H.; Mabrouk, S.B. Design and modeling for the performance enhancement of solar photovoltaic/thermal (PV/T) collectors. Int. J. Air-Cond. Refrig. 2020, 28, 2050015. [Google Scholar] [CrossRef]
- Slimani, M.E.A.; Amirat, M.; Kurucz, I.; Bahria, S.; Hamidat, A.; Chaouch, W.B. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions. Energy Convers. Manag. 2017, 133, 458–476. [Google Scholar] [CrossRef]
- Rejeb, O.; Sardarabadi, M.; Ménézo, C.; Passandideh-Fard, M.; Dhaou, M.H.; Jemni, A. Numerical and model validation of uncovered nanofluid sheet and tube type photovoltaic thermal solar system. Energy Convers. Manag. 2016, 110, 367–377. [Google Scholar] [CrossRef]
- Touafek, K.; Haddadi, M.; Malek, A. Design and modeling of a photovoltaic thermal collector for domestic air heating and electricity production. Energy Build. 2013, 59, 21–28. [Google Scholar] [CrossRef]
- Kazemian, A.; Hosseinzadeh, M.; Sardarabadi, M.; Passandideh-Fard, M. Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints. Energy 2018, 162, 210–223. [Google Scholar] [CrossRef]
- He, W.; Zhang, Y.; Ji, J. Comparative experiment study on photovoltaic and thermal solar system under natural circulation of water. Appl. Therm. Eng 2011, 31, 3369–3376. [Google Scholar] [CrossRef]
- Attia, M.E.H.; Zayed, M.E.; Kabeel, A.E.; Khelifa, A.; Irshad, K.; Rehman, S. Numerical analysis and design of a novel solar photovoltaic thermal system using finned cooling channel structures embedded with air/TiO2–water nano bi-fluid. Sol. Energy 2024, 269, 112368. [Google Scholar] [CrossRef]
- Zayed, M.E.; Zhao, J.; Du, Y.; Kabeel, A.E.; Shalaby, S.M. Factors affecting the thermal performance of the flat plate solar collector using nanofluids: A review. Sol. Energy 2019, 182, 382–396. [Google Scholar] [CrossRef]
- Le Ba, T.; Várady, Z.I.; Lukács, I.E.; Molnár, J.; Balczár, I.A.; Wongwises, S.; Szilágyi, I.M. Experimental investigation of rheological properties and thermal conductivity of SiO2–P25 TiO2 hybrid nanofluids. J. Therm. Anal. Calorim. 2021, 146, 493–507. Available online: https://link.springer.com/article/10.1007/s10973-020-10022-4 (accessed on 27 June 2024). [CrossRef]
- Kumar, S.; Thakur, R.; Lee, D.; Kumar, R. Impact of liquid spectrum filter and solar tracker on the overall effectiveness of a photovoltaic thermal system: An experimental investigation. Renew. Energy 2024, 226, 120390. [Google Scholar] [CrossRef]
- Hussein, H.A.; Numan, A.H.; Abdulrahman, R.A. Improving the hybrid photovoltaic/thermal system performance using water-cooling technique and Zn-H2O nanofluid. Int. J. Photoenergy 2017, 1, 6919054. [Google Scholar] [CrossRef]
- Han, X.; Sun, Y.; Huang, J.; Zheng, J. Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter. Int. J. Energy Res. 2020, 44, 4837–4850. [Google Scholar] [CrossRef]
- Lee, J.H.; Hwang, S.G.; Lee, G.H. Efficiency improvement of a photovoltaic thermal (PVT) system using nanofluids. Energies 2019, 12, 3063. [Google Scholar] [CrossRef]
- Essa, M.A.; Rashad, A.M.; Hatata, A.Y. A novel FFNN-AHO hybrid predictive model for enhancing the performance of jet-cooled PVT system. Indones. J. Electr. Eng. Comput. Sci. 2024, 34, 711–725. [Google Scholar] [CrossRef]
- Choi, H.; Choi, K. Parametric study of a novel air-based photovoltaic-thermal collector with a transverse triangular-shaped block. Renew. Energy 2022, 201, 96–110. [Google Scholar] [CrossRef]
- Song, Z.; Xue, Y.; Jia, B.; He, Y. Introduction of the rectangular hole plate in favor the performance of photovoltaic thermal solar air heaters with baffles. Appl. Therm. Eng. 2023, 220, 119774. [Google Scholar] [CrossRef]
- Chiang, W.; Permana, I.; Wang, F.; Chen, H.; Erdenebayar, M. Experimental investigation for an innovative hybrid photovoltaic/Thermal (PV/T) solar system. Energy Rep. 2022, 8, 910–918. [Google Scholar] [CrossRef]
- Kalateh, M.R.; Kianifar, A.; Sardarabadi, M. Energy, exergy, and entropy generation analyses of a water-based photovoltaic thermal system, equipped with clockwise counter-clockwise twisted tapes: An indoor experimental study. Appl. Therm. Eng. 2022, 215, 118906. [Google Scholar] [CrossRef]
- Hassan, A.; Abbas, S.; Yousuf, S.; Abbas, F.; Amin, N.M.; Ali, S.; Mastoi, M.S. An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system. Renew. Energy 2023, 202, 499–512. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, Y.; Zhang, C.; Pu, J.; Wei, S.; Dong, Y. A numerical investigation on optimization of PV/T systems with the field synergy theory. Appl. Therm. Eng. 2021, 185, 116381. [Google Scholar] [CrossRef]
- Pang, W.; Zhang, Y.; Duck, B.C.; Yu, H.; Song, X.; Yan, H. Cross sectional geometries effect on the energy efficiency of a photovoltaic thermal module: Numerical simulation and experimental validation. Energy 2020, 209, 118439. [Google Scholar] [CrossRef]
- Lebbi, M.; Touafek, K.; Benchatti, A.; Boutina, L.; Khelifa, A.; Baissi, M.T.; Hassani, S. Energy performance improvement of a new hybrid PV/T Bi-fluid system using active cooling and self-cleaning: Experimental study. Appl. Therm. Eng. 2021, 182, 116033. [Google Scholar] [CrossRef]
- Bevilacqua, P.; Bruno, R.; Arcuri, N. Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions. Energy 2020, 195, 116950. [Google Scholar] [CrossRef]
- Elminshawy, N.A.; Mohamed, A.M.I.; Morad, K.; Elhenawy, Y.; Alrobaian, A.A. Performance of PV panel coupled with geothermal air cooling system subjected to hot climatic. Appl. Therm. Eng. 2019, 148, 1–9. [Google Scholar] [CrossRef]
- Gomaa, M.R.; Hammad, W.; Al-Dhaifallah, M.; Rezk, H. Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis. Sol. Energy 2020, 211, 1110–1127. [Google Scholar] [CrossRef]
- An, W.; Wu, J.; Zhu, T.; Zhu, Q. Experimental investigation of a concentrating PV/T collector with Cu9S5 nanofluid spectral splitting filter. Appl. Energy 2016, 184, 197–206. [Google Scholar] [CrossRef]
- Han, X.; Tu, L.; Sun, Y. A spectrally splitting concentrating PV/T system using combined absorption optical filter and linear Fresnel reflector concentrator. Sol. Energy 2021, 223, 168–181. [Google Scholar] [CrossRef]
- Okonkwo, E.C.; Wole-Osho, I.; Almanassra, I.W.; Abdullatif, Y.M.; Al-Ansari, T. An updated review of nanofluids in various heat transfer devices. J. Therm. Anal. Calorim. 2021, 145, 2817–2872. Available online: https://link.springer.com/article/10.1007/s10973-020-09760-2 (accessed on 31 August 2024). [CrossRef]
Dimensions | Parameters | Values |
---|---|---|
Rated Power (W) | Pmpp | 280 |
Open Circuit Voltage (V) | Voc | 38.7 |
Short Circuit Current (A) | Isc | 8.98 |
Max Power Current (A) | Impp | 8.52 |
Max Power Voltage (V) | Vmpp | 32.8 |
Length (cm) | a | 165 |
Width (cm) | b | 98 |
Thickness (cm) | d | 3.5 |
Property | Air [42] | Water [43] | Ethylene Glycol [44] | TiO2 [42] | Water+TiO2 [This Work] | Air/Water+TiO2 [This Work] |
---|---|---|---|---|---|---|
Specific heat, (J/kg·K) | 1005 | 4183 | 2347 | 692 | 2437.5 | 1719.75 |
Thermal conductivity, (W/m·K) | 1.4 | 0.6 | 0.258 | 11.70 | 6.15 | 3.775 |
Density, (kg·m−3) | 1.165 | 998.2 | 1113 | 4230 | 2614.1 | 1.307 |
Dynamic viscosity, (Pa·s) | 1.78 × 10−5 | 1.01 × 10−3 | 20.9 | 1.83 × 10−3 | 1.4 × 10−3 | 7.08 × 10−4 |
Fluid Cooling | Daily Electrical Efficiency (%) | Daily Thermal Efficiency (%) | Daily Overall Efficiency (%) | References |
---|---|---|---|---|
Water | 14.87 | 26.36 | 41.23 | This paper |
Ethylene Glycol | 14.75 | 29.75 | 44.50 | This paper |
Air (20 fins) | 14.60 | 33.52 | 48.12 | This paper |
Air (Non-finned) | - | - | 9.23–10.84 | [42] |
Air (8 fins) | - | - | 13.38–14.05 | [42] |
Water+TiO2 | 14.90 | 25.50 | 40.40 | This paper |
Water+TiO2 (Non-finned) | - | - | 28.38–39.62 | [42] |
TiO2+Water (8 fins) | - | - | 30.27–42.26 | [42] |
Air/Water+TiO2 (20 fins) | 14.93 | 42.03 | 56.96 | This paper |
Cooling Technique | Fluid Type | Electrical Efficiency (%) | Thermal Efficiency (%) | Overall Efficiency (%) | References |
---|---|---|---|---|---|
Jet cooling in a compact module | Water | 14.23 | 54.43 | 68.1 | [49] |
Corrugated channel | Air | 16.8 | 45 | - | [50] |
channels with baffles | Air | 13.6 | 52.8 | - | [51] |
Serpentine with absorber plate | Water | 15.5 | 66.5 | 80 | [52] |
Serpentine with absorber plate | Nanofluids | 18.8 | 78 | 95 | [52] |
Tubes with twisted tapes | Water | 11.88 | 72 | - | [53] |
Serpentine with absorber plate | Water | 14.8 | 44.5 | 59 | [54] |
Corrugated channel | Water | 10.3 | 10.5 | - | [55] |
channels | Water | 16.9 | 39.8 | 65.9 | [56] |
Upper and lower channels | Water with air | 13.2 | 50 | 85 | [57] |
Spray jets | Water | 15.5 | - | - | [58] |
Serpentine | Air | 16 | - | - | [59] |
Open box with baffles | Water | 13 | 53 | 61 | [60] |
Solar tracker Fresnel lens | Water | 14.5 | 46.6 | 53 | [27] |
Spectral beam splitter | Fe3O4 | 12.5 | 48.1 | 60.61 | [26] |
FL and convex lens | Water+Ethylene Glycol | 14.6 | 39.1 | 53.7 | [29] |
No solar tracker concentrator | Zn-H2O | 6.5 | 60 | - | [46] |
FL and solar tracker: single axis | Cu9S5 | 12.6 | 19.4 | 34.2 | [61] |
FL, solar tracker: No | Propylene Glycol | 6.03 | 40.74 | 46.77 | [62] |
Reflector linear and flat mirror | CoSO4 | 9.1 | 40.78 | 49.88 | [48] |
No concentrator | Al2O3 | 13.20 | 48.88 | 62.08 | [49] |
Fin absorbers | Air/Water+TiO2 | 13.82 | 58.03 | 71.85 | This paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasri, H.; Riahi, J.; Oueslati, H.; Taghouti, H.; Vergura, S. Performance Analysis and Optimization of a Channeled Photovoltaic Thermal System with Fin Absorbers and Combined Bi-Fluid Cooling. Computation 2024, 12, 188. https://doi.org/10.3390/computation12090188
Nasri H, Riahi J, Oueslati H, Taghouti H, Vergura S. Performance Analysis and Optimization of a Channeled Photovoltaic Thermal System with Fin Absorbers and Combined Bi-Fluid Cooling. Computation. 2024; 12(9):188. https://doi.org/10.3390/computation12090188
Chicago/Turabian StyleNasri, Hamza, Jamel Riahi, Hatem Oueslati, Hichem Taghouti, and Silvano Vergura. 2024. "Performance Analysis and Optimization of a Channeled Photovoltaic Thermal System with Fin Absorbers and Combined Bi-Fluid Cooling" Computation 12, no. 9: 188. https://doi.org/10.3390/computation12090188
APA StyleNasri, H., Riahi, J., Oueslati, H., Taghouti, H., & Vergura, S. (2024). Performance Analysis and Optimization of a Channeled Photovoltaic Thermal System with Fin Absorbers and Combined Bi-Fluid Cooling. Computation, 12(9), 188. https://doi.org/10.3390/computation12090188