Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multiple Linear Regression
2.2. Multi Gene Genetic Programming
2.3. Regression Trees Ensembles: Boosted Trees, Bagging and Random Forest
2.3.1. Boosting Methodology
2.3.2. Bagging and Random Forest (RF) Methodology
2.4. Support Vector Regression (SVR)
- Linear kernel
- Sigmoid kernel:
- Radial Basis Function (RBF) kernel .
2.5. Gaussian Process Regression (GPR)
- is the vector of mean values.
- K is the covariance matrix, where the element , with being the Kronecker delta function.
- is the mean vector.
- is the covariance matrix, which can be divided into blocks (28):
- is the covariance between the test point and training points.
- is the variance at the test point.
2.6. Artificial Neural Networks
- —Number of inputs,
- —Number of samples.
3. Mean-Based Shapley Value Analysis for Feature Importance in Machine Learning Models
4. Dataset
5. Results and Discussion
- Number of Trees (NumLearningCycles = 100): A fixed value of 100 trees was used to balance model complexity and prevent overfitting, enabling precise evaluation of learning rate and tree depth effects.
- Learning Rate (λ): Learning rates ranging from 0.001 to 1.0 were tested, with 0.1 providing the best trade-off between convergence speed and error minimization.
- Tree Depth (Max Number of Splits): Tree depths, represented by the maximum number of splits, were varied from 1 to 512. The optimal depth was calculated using where n is the number of data points. Taking the logarithm of n − 1 for base 2 helps determine the approximate number of splits required for full separation of the dataset. This ensured the trees remained appropriately deep relative to dataset size while preventing overfitting.
- Best RMSE: 3.7860, with Min leaf size = 1 and Number of variables = 3.
- Best MAE: 2.5821, with Min leaf size = 1 and Number of variables = 4.
- Best MAPE: 0.1778, with Min leaf size = 1 and Number of variables = 4.
- Best R-squared: 0.9415, with Min leaf size = 1 and Number of variables = 3.
- C (Cost/Regularization): Balances the trade-off between allowing slack variables (errors) and tightening the decision boundary. Higher values focus on correctly classifying training points but risk overfitting.
- Gamma (γ): Controls the influence of individual training points. Smaller gamma values imply a broader influence, while larger values indicate a more localized impact.
- Epsilon (ε): Defines the tolerance margin where no penalty is applied to prediction errors, controlling model sensitivity.
- C = 1.4513; ε = 0.0043; γ = 20.7363 for the RBF kernel;
- C = 0.3208 and ε = 0.0432 for the linear kernel;
- C = 23.6326; ε = 0.0521; γ = 0.0118 for sigmoid kernel.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Reference | Num. of Tests | (MPa) | (GPa) | (mm) | (mm) | (mm) | (mm) | (kN) |
---|---|---|---|---|---|---|---|---|
Adhikary and Mutsuyoshi [33] | 7 | 24–36.5 | 230 | 0.11–0.33 | 100–150 | 100 | 150 | 16.75–28.25 |
Bilotta et al. [34] | 29 | 21.46–26 | 170–241 | 0.166–1.4 | 100–400 | 50–100 | 150 | 17.24–33.56 |
Bilotta et al. [35] | 13 | 19 | 109–221 | 1.2–1.7 | 300 | 60–100 | 160 | 29.86–54.79 |
Bimal and Hiroshi [36] | 7 | 24–36.5 | 230 | 0.111–0.334 | 100–150 | 100 | 150 | 16.8–28.3 |
Carlo et al. [37] | 14 | 58–63 | 230–390 | 0.165–0.495 | 65–130 | 50 | 100 | 12.1–29.8 |
Chajes et al. [38] | 15 | 24–48.87 | 108.48 | 1.016 | 51–203 | 25.4 | 152.4–228.6 | 8.09–12.81 |
Czaderski and Olia [39] | 8 | 32–33 | 165–175 | 1.23–1.68 | 300 | 100 | 150 | 43.5–56.1 |
Dai et al. [40] | 19 | 33.1–35 | 74–230 | 0.11–0.59 | 210–330 | 100 | 400 | 15.6–51 |
Faella et al. [41] | 3 | 32.78–37.55 | 140 | 1.4 | 200–250 | 50 | 150 | 31–39.78 |
Fen et al. [42] | 11 | 8–36 | 240.72–356.75 | 0.111 | 50–120 | 50–100 | 150 | 7.13–17.34 |
Hoseini and Mostofinejad [43] | 22 | 36.5–41.1 | 238 | 0.131 | 20–250 | 48 | 150 | 7.58–10.12 |
Kanakubo et al. [44] | 12 | 23.8–57.6 | 252.2–425.1 | 0.083–0.334 | 300 | 50 | 100 | 7–25.6 |
Kamiharako et al. [45] | 17 | 34.9–75.5 | 270 | 0.111–0.222 | 100–250 | 10–90 | 100 | 3.1–14.9 |
Ko et al. [46] | 13 | 27.7–31.4 | 165–210 | 1–1.4 | 300 | 60–100 | 150 | 27.5–56.5 |
Liu [47] | 57 | 16–51.6 | 272.66 | 0.167 | 50–300 | 50 | 100 | 10.97–23.87 |
Lu et al. [48] | 3 | 47.64–64.08 | 230–390 | 0.22–0.501 | 200–250 | 40–100 | 100–500 | 14.1–38 |
Maeda et al. [49] | 5 | 40.8–44.91 | 230 | 0.11–0.22 | 65–300 | 50 | 100 | 5.8–16.25 |
Nakaba et al. [50] | 41 | 24.41–65.73 | 124.5–425 | 0.167–2 | 250–300 | 40–50 | 100 | 8.73–27.24 |
Pham and Al-Mahaidi [51] | 23 | 44.57 | 209 | 0.176 | 60–220 | 70–100 | 140 | 18.8–42.8 |
Ren [52] | 28 | 22.96–46.07 | 83.03–207 | 0.33–0.507 | 60–150 | 20–80 | 150 | 4.61–22.8 |
Savoia and Ferracuti [53] | 14 | 52.6 | 165–291.02 | 0.13–1.2 | 200–400 | 50–80 | 150 | 14.4–41 |
Savoia et al. [54] | 20 | 26 | 180–241 | 0.166–1.2 | 100–400 | 80–100 | 150 | 18.97–40 |
Sharma et al. [55] | 24 | 23.76–28.66 | 32.7–300 | 1.2–4 | 100–300 | 30–50 | 100 | 12.5–46.35 |
Tan [56] | 6 | 30.8 | 97–235 | 0.111–0.169 | 70–130 | 50 | 100 | 6.46–11.43 |
Täljsten [57] | 5 | 41.2–68.33 | 162–170 | 1.2–1.25 | 100–300 | 50 | 200 | 17.3–35.1 |
Takeo et al. [58] | 25 | 24.7–29.25 | 230–373 | 0.111–0.501 | 100–300 | 40 | 100 | 6.75–14.35 |
Toutanji et al. [59] | 10 | 17.0–61.5 | 110 | 0.495–0.99 | 100 | 50 | 200 | 11.64–19.03 |
Ueda et al. [60] | 15 | 23.79–48.85 | 230–372 | 0.11–0.55 | 65–300 | 10–100 | 100–500 | 2.4–38 |
Ueno et al. [61] | 40 | 23–74.5 | 42.625–43.537 | 1.03–1.8 | 200–230 | 40 | 80 | 9.52–18.29 |
Wu and Jiang [3] | 65 | 25.3–59.02 | 238.1–248.3 | 0.167 | 30–400 | 50 | 150 | 7.38–30.15 |
Wu et al. [62] | 22 | 65.73 | 23.9–390 | 0.083–1 | 250–300 | 40–100 | 100 | 11.8–27.25 |
Woo and Lee [63] | 51 | 24–40 | 152.2 | 1.4 | 50–300 | 10–50 | 200 | 4.55–27.8 |
Fu et al. [64] | 24 | 24.1–70 | 230 | 0.17–0.84 | 50–300 | 30–70 | 100 | 7.8–31.13 |
Yao [65] | 59 | 19.12–27.44 | 22.5–256 | 0.165–1.27 | 75–240 | 25–100 | 100–150 | 4.75–19.07 |
Yuan et al. [66] | 1 | 23.79 | 256 | 0.165 | 190 | 25 | 150 | 5.74 |
Zhang et al. [67] | 20 | 38.9–43.5 | 94–227 | 0.262–0.655 | 250 | 50–150 | 200–250 | 13.03–52.49 |
Zhao et al. [68] | 5 | 16.4–29.36 | 240 | 0.083 | 100–150 | 100 | 150 | 11–12.75 |
Zhou [69] | 102 | 48.56–74.67 | 71–237 | 0.111–0.341 | 20–200 | 15–150 | 150 | 3.75–28 |
References
- Hadzima-Nyarko, M.; Čolak, S.; Bulajić, B.Đ.; Ademović, N. Assessment of Selected Models for FRP-Retrofitted URM Walls under In-Plane Loads. Buildings 2021, 11, 559. [Google Scholar] [CrossRef]
- Hadzima-Nyarko, M.; Ademović, N.; Pavić, G.; Kalman Šipoš, T. Strengthening techniques for masonry structures of cultural heritage according to recent Croatian provisions. Earthq. Struct. 2018, 15, 473–485. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, C. Quantification of Bond-Slip Relationship for Externally Bonded FRP-to-Concrete Joints. J. Compos. Constr. 2013, 17, 673–686. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S.; Huang, Z.; Sui, L.; Chen, Y. Explicit Neural Network Model for Predicting FRP-Concrete Interfacial Bond Strength Based on a Large Database. Compos. Struct. 2020, 240, 111998. [Google Scholar] [CrossRef]
- Li, J.; Gravina, R.J.; Smith, S.T.; Visintin, P. Bond Strength and Bond Stress-Slip Analysis of FRP Bar to Concrete Incorporating Environmental Durability. Constr. Build. Mater. 2020, 261, 119860. [Google Scholar] [CrossRef]
- Su, M.; Zhong, Q.; Peng, H.; Li, S. Selected Machine Learning Approaches for Predicting the Interfacial Bond Strength between FRPs and Concrete. Constr. Build. Mater. 2021, 270, 121456. [Google Scholar] [CrossRef]
- Haddad, R.; Haddad, M. Predicting FRP-concrete bond strength using artificial neural networks: A comparative analysis study. Struct. Concr. 2021, 22, 38–49. [Google Scholar] [CrossRef]
- Chen, S.-Z.; Zhang, S.-Y.; Han, W.-S.; Wu, G. Ensemble Learning Based Approach for FRP-Concrete Bond Strength Prediction. Constr. Build. Mater. 2021, 302, 124230. [Google Scholar] [CrossRef]
- Barkhordari, M.S.; Armaghani, D.J.; Sabri, M.M.S.; Ulrikh, D.V.; Ahmad, M. The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength. Materials 2022, 15, 3019. [Google Scholar] [CrossRef]
- Alabdullh, A.A.; Biswas, R.; Gudainiyan, J.; Khan, K.; Bujbarah, A.H.; Alabdulwahab, Q.A.; Amin, M.N.; Iqbal, M. Hybrid Ensemble Model for Predicting the Strength of FRP Laminates Bonded to the Concrete. Polymers 2022, 14, 3505. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Lee, D.-E.; Hu, G.; Natarajan, Y.; Preethaa, S.; Rathinakumar, A.P. Ensemble Machine Learning-Based Approach for Predicting of FRP–Concrete Interfacial Bonding. Mathematics 2022, 10, 231. [Google Scholar] [CrossRef]
- Jamhiri, B.; Jalal, F.E.; Chen, Y. Hybridizing Multivariate Robust Regression Analyses with Growth Forecast in Evaluation of Shear Strength of Zeolite–Alkali Activated Sands. Multiscale Multidiscip. Model. Exp. Des. 2022, 5, 317–335. [Google Scholar] [CrossRef]
- Bui, D.T.; Khosravi, K.; Tiefenbacher, J.; Nguyen, H.; Kazakis, N. Improving Prediction of Water Quality Indices Using Novel Hybrid Machine-Learning Algorithms. Sci. Total Environ. 2020, 721, 137612. [Google Scholar] [CrossRef]
- Parhi, S.K.; Patro, S.K. Prediction of Compressive Strength of Geopolymer Concrete Using a Hybrid Ensemble of Grey Wolf Optimized Machine Learning Estimators. J. Build. Eng. 2023, 71, 106521. [Google Scholar] [CrossRef]
- Searson, D.P.; Leahy, D.E.; Willis, M.J. GPTIPS: An Open-Source Genetic Programming Toolbox For Multigene Symbolic Regression. In Proceedings of the International Multiconference of Engineers and Computer Scieintist (IMECS 2010), Hong Kong, China, 17–19 March 2010; Volume I. [Google Scholar]
- Kovačević, M.; Lozančić, S.; Nyarko, E.K.; Hadzima-Nyarko, M. Application of Artificial Intelligence Methods for Predicting the Compressive Strength of Self-Compacting Concrete with Class F Fly Ash. Materials 2022, 15, 4191. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibsirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kovačević, M.; Ivanišević, N.; Petronijević, P.; Despotović, V. Construction cost estimation of reinforced and prestressed concrete bridges using machine learning. Građevinar 2021, 73, 1–13. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, H.; Olsen, R.; Stone, C.J. Classification and Regression Trees; Chapman and Hall/CRC: Wadsworth, OH, USA, 1984. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Kecman, V. Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Smola, A.J.; Sholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Hagan, M.T.; Menhaj, M.B. Training Feedforward Networks with Marquardt Algorithm. IEEE Trans. Neural Netw. 1994, 5, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Shapley, L. A value for n-person games. In Contributions to the Theory of Games II; Kuhn, H., Tucker, A., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–317. [Google Scholar]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, 2nd ed.; Christoph Molnar: Munich, Germany, 2022. [Google Scholar]
- Adhikary, B.B.; Mutsuyoshi, H. Study on the Bond between Concrete and Externally Bonded CFRP Sheet. In Proceedings of the 5th International Symposium on Fiber Reinforced Concrete Structures (FRPRCS-5); Thomas Telford Publishing: London, UK, 2001; pp. 371–378. [Google Scholar]
- Bilotta, A.; Di Ludovico, M.; Nigro, E. FRP-to-Concrete Interface Debonding: Experimental Calibration of a Capacity Model. Compos. Part B Eng. 2011, 42, 1539–1553. [Google Scholar] [CrossRef]
- Bilotta, A.; Ceroni, F.; Di Ludovico, M.; Nigro, E.; Pecce, M.; Manfredi, G. Bond Efficiency of EBR and NSM FRP Systems for Strengthening Concrete Members. J. Compos. Constr. 2011, 15, 629–638. [Google Scholar] [CrossRef]
- Bimal, B.A.; Hiroshi, M. Study on the bond between concrete and externally bonded CFRP sheet. In Proceedings of the 5th International Symposium on FRP Reinforcement for Concrete Structures, Cambridge, UK, 16–18 July 2001; University of Cambridge: Cambridge, UK, 2001; pp. 371–378. [Google Scholar]
- Pellegrino, C.; Tinazzi, D.; Modena, C. Experimental Study on Bond Behavior Between Concrete and FRP Reinforcement. J. Compos. Constr. 2008, 12, 180–188. [Google Scholar] [CrossRef]
- Chajes, M.J.; Finch, W.W., Jr.; Januszka, T.F.; Thomson, T.A., Jr. Bond and Force Transfer of Composite-Material Plates Bonded to Concrete. Struct. J. 1996, 93, 209–217. [Google Scholar] [CrossRef]
- Czaderski, C.; Olia, S. EN-Core Round Robin Testing Program—Contribution of Empa. In Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012), Rome, Italy, 13–15 June 2012; pp. 1–8. Available online: https://www.dora.lib4ri.ch/empa/islandora/object/empa:9237 (accessed on 12 February 2020).
- Dai, J.-G.; Sato, Y.; Ueda, T. Improving the load transfer and effective bond length for FRP composites bonded to concrete. Proc. Jpn. Concr. Inst. 2002, 24, 1423–1428. [Google Scholar]
- Faella, C.; Nigro, E.; Martinelli, E.; Sabatino, M.; Salerno, N.; Mantegazza, G. Aderenza tra calcestruzzo e Lamine di FRP utilizzate come placcaggio di elementi inflessi. Parte I: Risultati sperimentali. In Proceedings of the XIV Congresso C.T.E., Mantova, Italy, 9 November 2002; pp. 7–8. [Google Scholar]
- Fen, Z.; Gu, X.; Zhang, W.; Liu, L. Experimental study on bond behavior between carbon fiber reinforced polymer and concrete. Struct. Eng. 2008, 24, 154–163. [Google Scholar]
- Hosseini, A.; Mostofinejad, D. Effective Bond Length of FRP-to-Concrete Adhesively-Bonded Joints: Experimental Evaluation of Existing Models. Int. J. Adhes. Adhes. 2014, 48, 150–158. [Google Scholar] [CrossRef]
- Kanakubo, T.; Nakaba, K.; Yoshida, T.; Yoshizawa, H. A Proposal for the Local Bond Stress–Slip Relationship between Continuous Fiber Sheets and Concrete. Concr. Res. Technol. 2001, 12, 33–43. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
- Kamiharako, A.; Shimomura, T.; Maruyama, K. The Influence of the Substrate on the Bond Behavior of Continuous Fiber Sheet. Proc. Jpn. Concr. Inst. 2003, 25, 1735–1740. [Google Scholar]
- Ko, H.; Matthys, S.; Palmieri, A.; Sato, Y. Development of a simplified bond stress–slip model for bonded FRP–concrete interfaces. Constr. Build. Mater. 2014, 68, 142–157. [Google Scholar] [CrossRef]
- Liu, J. Effect of Concrete Strength on Interfacial Bond Behavior of CFRP–Concrete. Ph.D. Thesis, Shenzhen University, Shenzhen, China, 2012. (In Chinese). [Google Scholar]
- Lu, X.Z.; Ye, L.P.; Teng, J.G.; Jiang, J.J. Meso-Scale Finite Element Model for FRP Sheets/Plates Bonded to Concrete. Eng. Struct. 2005, 27, 564–575. [Google Scholar] [CrossRef]
- Maeda, T.; Asano, Y.; Sato, Y.; Ueda, T.; Kakuta, Y. A study on bond mechanism of carbon fiber sheet. In Proceedings of the 3rd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete Structures, Sapporo, Japan, 14–16 October 1997; pp. 279–285. [Google Scholar]
- Nakaba, K.; Kanakubo, T.; Furuta, T.; Yoshizawa, H. Bond behavior between fiber-reinforced polymer laminates and concrete. ACI Struct. J. 2001, 98, 359–367. [Google Scholar]
- Pham, H.B.; Al-Mahaidi, R. Modelling of CFRP–Concrete Shear-Lap Tests. Constr. Build. Mater. 2007, 21, 727–735. [Google Scholar] [CrossRef]
- Ren, H. Study on Basic Mechanical Properties and Long-Term Mechanical Properties of Concrete Structures Strengthened with Fiber Reinforced Polymer. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2003. (In Chinese). [Google Scholar]
- Savoia, M.; Ferracuti, B. Strengthening of RC Structure by FRP: Experimental Analyses and Numerical Modelling. Ph.D. Thesis, University of Bologna, Bologna, Italy, 2006. [Google Scholar]
- Savoia, M.; Bilotta, A.; Ceroni, F.; Di Ludovico, M.; Fava, G.; Ferracuti, B.; Mazzotti, C.; Nigro, E.; Olivito, R.S.; Pecce, M.; et al. Experimental Round Robin Test on FRP–Concrete Bonding. In Proceedings of the 9th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures (FRPRCS-9), Sydney, Australia, 13–15 July 2009. [Google Scholar]
- Sharma, S.K.; Mohamed Ali, M.S.; Goldar, D.; Sikdar, P.K. Plate–Concrete Interfacial Bond Strength of FRP and Metallic Plated Concrete Specimens. Compos. Part B Eng. 2006, 37, 54–63. [Google Scholar] [CrossRef]
- Tan, Z. Experimental Study on the Performance of Concrete Beams Strengthened with GFRP. Master’s Thesis, Tsinghua University, Beijing, China, 2002. (In Chinese). [Google Scholar]
- Taljsten, B. Plate Bonding: Strengthening of Existing Concrete Structures with Epoxy Bonded Plates of Steel or Fibre Reinforced Plastics. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 1994. [Google Scholar]
- Takeo, M.; Tanaka, T. Analytical solution for bond-slip behavior in FRP-concrete systems. Compos. Struct. 2020, 240, 111998. [Google Scholar]
- Toutanji, H.; Saxena, P.; Zhao, L.; Ooi, T. Prediction of Interfacial Bond Failure of FRP–Concrete Surface. J. Compos. Constr. 2007, 11, 427–436. [Google Scholar] [CrossRef]
- Ueda, T.; Sato, Y.; Asano, Y. Experimental Study on Bond Strength of Continuous Carbon Fiber Sheet. In Proceedings of the 4th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures; ACI: Farmington Hills, MI, USA, 1999; pp. 407–416. [Google Scholar]
- Ueno, S.; Toutanji, H.; Vuddandam, R. Introduction of a Stress State Criterion to Predict Bond Strength between FRP and Concrete Substrate. J. Compos. Constr. 2015, 19, 04014028. [Google Scholar] [CrossRef]
- Wu, Z.S.; Yuan, H.; Yoshizawa, H.; Kanakubo, T. Experimental/Analytical Study on Interfacial Fracture Energy and Fracture Propagation Along FRP–Concrete Interface. In Fracture Mechanics for Concrete Materials: Testing and Applications; SP-201; American Concrete Institute: Farmington Hills, MI, USA, 2001. [Google Scholar]
- Woo, H.; Lee, H. Bond strength degradation in FRP-strengthened concrete under cyclic loads. Compos. Struct. 2004, 64, 7–16. [Google Scholar]
- Fu, Q.; Xu, J.; Jian, G.G.; Yu, C. Bond Strength between CFRP Sheets and Concrete. In FRP Composites in Civil Engineering, Proceedings of the International Conference on FRP Composites in Civil Engineering (CICE 2001), Hong Kong, China, 12–15 December 2001; Teng, J.G., Ed.; Elsevier Science: Oxford, UK, 2001; pp. 357–364. [Google Scholar]
- Yao, J. Debonding in FRP-Strengthened RC Structures. Ph.D. Thesis, The Hong Kong Polytechnic University, Hong Kong, China, 2004. [Google Scholar]
- Yuan, H.; Wu, Z.S.; Yoshizawa, H. Theoretical solutions on interfacial stress transfer of externally bonded steel/composite laminates. JSCE 2001, 18, 27–39. [Google Scholar] [CrossRef]
- Zhang, H.; Smith, S.T. Fibre-Reinforced Polymer (FRP)-to-Concrete Joints Anchored with FRP Anchors: Tests and Experimental Trends. Can. J. Civ. Eng. 2013, 40, 731–742. [Google Scholar] [CrossRef]
- Zhao, H.D.; Zhang, Y.; Zhao, M. Study on Bond Behavior of Carbon Fiber Sheet and Concrete Base. In Proceedings of the First Chinese Academic Conference on FRP-Concrete Structures; Building Research Institute of Ministry of Metallurgical Industry: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhou, Y.W. Analytical and Experimental Study on the Strength and Ductility of FRP–Reinforced High Strength Concrete Beam. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2009. (In Chinese). [Google Scholar]
- Massey, F.J. The Kolmogorov–Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Good, P.I. Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Searson, D.P. GPTIPS 2: An Open-Source Software Platform for Symbolic Data Mining. In Handbook of Genetic Programming Applications; Gandomi, A.H., Ed.; Springer: New York, NY, USA, 2015; Chapter 22. [Google Scholar]
- Lu, X.Z.; Teng, J.G.; Ye, L.P.; Jiang, J.J. Bond–slip models for FRP sheets/plates bonded to concrete. Eng. Struct. 2005, 27, 920–937. [Google Scholar] [CrossRef]
- Teng, J.G.; Chen, J.F.; Smith, S.T.; Lam, L. Behaviour and strength of FRP-strengthened RC structures: A state-of-the-art review. Constr. Build. Mater. 2003, 17, 491–503. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, C.; Liu, J.; Zou, X.; Sneed, L.H.; Bao, Y.; Wang, L. Prediction of FRP-concrete interfacial bond strength based on machine learning. Eng. Struct. 2023, 274, 115156. [Google Scholar] [CrossRef]
- Chen, J.F.; Teng, J.G. Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng. 2001, 127, 784–791. [Google Scholar] [CrossRef]
(mm) | (MPa) | (GPa) | (mm) | (mm) | (mm) | (kN) | |
---|---|---|---|---|---|---|---|
min | 80.00 | 8.00 | 22.50 | 0.08 | 10.00 | 20.00 | 2.40 |
max | 500.00 | 74.67 | 425.10 | 4.00 | 150.00 | 400.00 | 56.50 |
average | 144.31 | 39.38 | 203.66 | 0.50 | 57.62 | 175.42 | 17.80 |
mode | 150.00 | 48.56 | 230.00 | 0.17 | 50.00 | 100.00 | 11.90 |
median | 150.00 | 36.50 | 230.00 | 0.17 | 50.00 | 150.00 | 15.73 |
std | 56.93 | 15.23 | 77.97 | 0.53 | 26.57 | 102.31 | 10.13 |
(mm) | (MPa) | (GPa) | (mm) | (mm) | (mm) | (kN) | |
---|---|---|---|---|---|---|---|
min | 56.93 | 8.00 | 22.50 | 0.08 | 10.00 | 20.00 | 2.40 |
max | 500.00 | 74.67 | 425.10 | 4.00 | 150.00 | 400.00 | 56.50 |
average | 144.84 | 38.94 | 208.34 | 0.53 | 57.50 | 180.23 | 18.55 |
mode | 150.00 | 65.73 | 230.00 | 0.17 | 50.00 | 100.00 | 12.75 |
median | 150.00 | 36.27 | 230.00 | 0.17 | 50.00 | 162.50 | 16.47 |
std | 68.25 | 15.03 | 75.95 | 0.58 | 25.21 | 105.20 | 9.85 |
Parameter | Estimate | Standard Error | tStat | p Value |
---|---|---|---|---|
(Intercept) | −15.9200 | 2.8688 | −5.5492 | |
−0.0393 | 0.0138 | −2.8525 | 0.0045 | |
0.3682 | 0.0702 | 5.2473 | ||
0.0098 | 7.0878 | |||
0.0654 | 0.0476 | 1.3739 | 0.1700 | |
0.0574 | 0.0112 | 5.1353 | ||
0.0443 | 0.0054 | 8.2612 | ||
0.0014 | 0.0002 | 6.0212 | ||
0.1313 | 0.0145 | 9.0761 | ||
−0.0005 | 0.0001 | −3.9565 | ||
−0.0001 | 0.0001 | −2.4285 | 0.0155 | |
−0.0025 | 0.0007 | −3.3629 | ||
−0.0001 | 0.0000 | −4.3966 | ||
−0.0009 | 0.0002 | −3.8854 | ||
−0.00007 | 0.0000 | −3.4915 |
Parameter | Setting |
---|---|
Function set | times, minus, plus, rdivide, square, exp, log, mult3, sqrt, cube, power |
Population size | From 100 to 1000 with step 100 |
Number of generations | 1000 |
Max number of genes | 6 |
Max tree depth | 6 |
Tournament size | 2 |
Elitism | 0.05% of population |
Crossover probability | 0.84 |
Mutation probability | 0.14 |
Probability of Pareto tournament | 0.70 |
Model ID | Model Complexity | RMSE | MAE | MAPE/100 | R |
---|---|---|---|---|---|
7961 | 95 | 4.4436 | 3.4294 | 0.2167 | 0.9147 |
7570 | 92 | 4.6349 | 3.6170 | 0.2417 | 0.9079 |
1766 | 82 | 4.8264 | 3.7418 | 0.2456 | 0.9004 |
3867 | 88 | 4.8137 | 3.7101 | 0.2404 | 0.9004 |
7161 | 72 | 4.5985 | 3.5375 | 0.2362 | 0.9095 |
7164 | 66 | 4.6936 | 3.6328 | 0.2407 | 0.9056 |
7167 | 59 | 4.6545 | 3.5922 | 0.2383 | 0.9056 |
6726 | 51 | 4.6894 | 3.5855 | 0.2383 | 0.9059 |
6959 | 42 | 4.6829 | 3.5373 | 0.2292 | 0.9061 |
7292 | 41 | 4.9642 | 3.7915 | 0.2514 | 0.8941 |
Model | RMSE | MAE | MAPE/100 | R |
---|---|---|---|---|
Lin. kernel | 8.7154 | 6.6468 | 0.2105 | 0.7751 |
RBF kernel | 4.9646 | 3.5352 | 0.1171 | 0.9332 |
Sig. kernel | 8.7104 | 6.6094 | 0.2073 | 0.7718 |
GP Model Covariance Function | Covariance Function Parameters | |||
---|---|---|---|---|
Exponential | ||||
48.8828 | 35.9025 | |||
Squared Exponential | ||||
1.1564 | 11.6670 | |||
Matern 3/2 | ||||
1.9430 | 12.5620 | |||
Matern 5/2 | ||||
1.6073 | 12.0472 | |||
Rational Quadratic | ||||
1.9747 | 0.0057 | 39.8560 |
Covariance Function Parameters | |||||
---|---|---|---|---|---|
ARD Exponential: = 0.8339 | |||||
45.0052 | 813.3275 | 41.5953 | 15.0703 | 83.9007 | 199.8780 |
ARD Squared exponential: = 13.0762 | |||||
0.1181 | 6.1165 | 0.1452 | 0.3453 | 2.0239 | 1.5321 |
ARD Matern 3/2: = 11.8722 | |||||
0.4342 | 10.3369 | 0.8032 | 0.2128 | 1.7551 | 3.0059 |
ARD Matern 5/2: = 11.2938 | |||||
0.2738 | 8.1979 | 0.6294 | 0.1177 | 1.1174 | 2.2108 |
ARD Rational quadratic: = 40.2700 | |||||
1.2252 | 23.3200 | 1.2758 | 0.3892 | 2.1230 | 5.8575 |
Model | RMSE | MAE | MAPE/100 | R |
---|---|---|---|---|
Exp. | 3.2790 | 2.1928 | 0.1498 | 0.9558 |
Sq.Exp. | 3.8110 | 2.6042 | 0.1794 | 0.9395 |
Mattern 3/2 | 3.5651 | 2.3879 | 0.1632 | 0.9475 |
Mattern 5/2 | 3.6651 | 2.4752 | 0.1697 | 0.9443 |
Rat.Quadratic | 3.3152 | 2.2421 | 0.1593 | 0.9551 |
Model | RMSE | MAE | MAPE/100 | R |
---|---|---|---|---|
ARD Exp. | 2.9039 | 1.8953 | 0.1257 | 0.9650 |
ARD Sq.Exp. | 3.4447 | 2.3562 | 0.1590 | 0.9511 |
ARD Mattern 3/2 | 2.8671 | 1.9319 | 0.1329 | 0.9658 |
ARD Mattern 5/2 | 3.0073 | 2.0360 | 0.1410 | 0.9623 |
ARD Rat.Quadratic | 2.9167 | 1.9377 | 0.1323 | 0.9647 |
Parameter | Value |
---|---|
Epoch limit | 1000 |
MSE target (performance) | 0 |
Gradient limit | |
Mu value |
Model | RMSE | MAE | MAPE/100 | R |
---|---|---|---|---|
Linear with interactions | 4.9278 | 3.8491 | 0.2748 | 0.8955 |
MGGP | 4.4436 | 3.4294 | 0.2167 | 0.9147 |
Gradient Boosted Trees | 3.3427 | 2.2603 | 0.1559 | 0.9536 |
Random Forest (64 splits) | 3.7860 | 2.5821 | 0.1778 | 0.9415 |
TreeBagger | 3.8302 | 2.5847 | 0.1790 | 0.9399 |
SVR RBF | 4.9646 | 3.5352 | 0.1171 | 0.9332 |
GPR Exponential | 3.2790 | 2.1928 | 0.1498 | 0.9558 |
GPR ARD Exponential | 2.8671 | 1.9319 | 0.1329 | 0.9658 |
NN 6-13-1 | 4.0992 | 3.2075 | 0.2234 | 0.9293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačević, M.; Hadzima-Nyarko, M.; Petronijević, P.; Vasiljević, T.; Radomirović, M. Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete. Computation 2025, 13, 17. https://doi.org/10.3390/computation13010017
Kovačević M, Hadzima-Nyarko M, Petronijević P, Vasiljević T, Radomirović M. Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete. Computation. 2025; 13(1):17. https://doi.org/10.3390/computation13010017
Chicago/Turabian StyleKovačević, Miljan, Marijana Hadzima-Nyarko, Predrag Petronijević, Tatijana Vasiljević, and Miroslav Radomirović. 2025. "Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete" Computation 13, no. 1: 17. https://doi.org/10.3390/computation13010017
APA StyleKovačević, M., Hadzima-Nyarko, M., Petronijević, P., Vasiljević, T., & Radomirović, M. (2025). Comparative Analysis of Machine Learning Models for Predicting Interfacial Bond Strength of Fiber-Reinforced Polymer-Concrete. Computation, 13(1), 17. https://doi.org/10.3390/computation13010017