A Computational Study on Two-Parameter Singularly Perturbed Third-Order Delay Differential Equations
Abstract
:1. Introduction
2. Problem Statement
3. Stability Result
4. Derivative Estimates
4.1. Case (i): Analysis and Estimates
4.1.1. Estimation of the Smooth Component
4.1.2. Estimates of Singular Component
4.2. Case (ii): Analysis and Estimates
4.2.1. Estimation of the Smooth Component
4.2.2. Estimates of Singular Component
5. Finite Difference Method
5.1. Shishkin Mesh
5.2. Finite-Difference Scheme
5.3. Discrete Maximum Principle and Stability Result
6. Convergence Analysis
7. Numerical Examples
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernis, F.; Peletier, L.A. Two problems from draining flows involving third-order ordinary differential equations. SIAM J. Math. Anal. 1996, 27, 515–527. [Google Scholar] [CrossRef]
- Guo, J.S.; Tsai, J.C. The structure of solutions for a third-order differential equation in boundary layer theory. Jpn. J. Ind. Appl. Math. 2005, 22, 311–351. [Google Scholar] [CrossRef]
- Troy, W.C. Solutions of third-order differential equations relevant to draining and coating flows. SIAM J. Math. Anal. 1993, 24, 155–171. [Google Scholar] [CrossRef]
- Tuck, E.O.; Schwartz, L.W. A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev. 1990, 32, 453–469. [Google Scholar] [CrossRef]
- Varlamov, V.V. The third-order nonlinear evolution equation governing wave propagation in relaxing media. Math. Probl. Eng. 2001, 99, 25–48. [Google Scholar] [CrossRef]
- Lee, K.C.; Senu, N.; Ahmadian, A.; Ibrahim, S.N.I.; Baleanu, D. Numerical study of third-order ordinary differential equations using a new class of two derivative Runge-Kutta type methods. Alex. Eng. J. 2020, 59, 2449–2467. [Google Scholar] [CrossRef]
- Erbe, L. Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations. Pac. J. Math. 1976, 64, 369–385. [Google Scholar] [CrossRef]
- Jayaraman, G.; Padmanabhan, N.; Mehrotra, R. Entry flow into a circular tube of slowly varying cross-section. Fluid Dyn. Res. 1986, 1, 131–144. [Google Scholar] [CrossRef]
- McKean, H.P. Nagumo’s equation. Adv. Math. 1970, 4, 209–223. [Google Scholar] [CrossRef]
- Vreeke, S.A.; Sandquist, G.M. Phase space analysis of reactor kinetics. Nucl. Sci. Eng. 1970, 42, 295–305. [Google Scholar] [CrossRef]
- Gracia, J.L.; O’Riordan, E.; Pickett, M.L. A parameter robust second order numerical method for a singularly perturbed two-parameter problem. Appl. Numer. Math. 2006, 56, 962–980. [Google Scholar] [CrossRef]
- Toprakseven, S.; Zhu, P. Error analysis of a weak Galerkin finite element method for two-parameter singularly perturbed differential equations in the energy and balanced norms. Appl. Math. Comput. 2023, 441, 127683. [Google Scholar] [CrossRef]
- O’Malley, R.E. Two-parameter singular perturbation problems for second-order equations. J. Math. Mech. 1967, 16, 1143–1164. [Google Scholar]
- Roos, H.G.; Uzelac, Z. The SDFEM for a convection-diffusion problem with two small parameters. Comput. Methods Appl. Math. 2003, 3, 443–458. [Google Scholar] [CrossRef]
- Roy, N.; Jha, A. A parameter uniform method for two-parameter singularly perturbed boundary value problems with discontinuous data. MethodsX 2023, 10, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Linß, T.; Roos, H.G. Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters. J. Math. Anal. Appl. 2004, 289, 355–366. [Google Scholar]
- Kadalbajoo, M.K.; Yadaw, A.S. B-Spline collocation method for a two-parameter singularly perturbed convection–diffusion boundary value problems. Appl. Math. Comput. 2008, 201, 504–513. [Google Scholar] [CrossRef]
- Kadalbajoo, M.K.; Yadaw, A.S. Parameter-uniform Ritz-Galerkin finite element method for two parameter singularly perturbed boundary value problems. Int. J. Pure Appl. Math. 2009, 55, 287–300. [Google Scholar]
- Kadalbajoo, M.K.; Yadaw, A.S. Finite difference, finite element and B-spline collocation methods applied to two parameter singularly perturbed boundary value problems1. JNAIAM. J. Numer. Anal. Ind. Appl. Math. 2011, 5, 163–180. [Google Scholar]
- Kalaiselvan, S.S.; Miller, J.J.H.; Valarmathi, S. A parameter uniform numerical method for a singularly perturbed two-parameter delay differential equation. Appl. Numer. Math. 2019, 145, 90–110. [Google Scholar] [CrossRef]
- Subburayan, V.; Mahendran, R. An ε-uniform numerical method for third order singularly perturbed delay differential equations with discontinuous convection coefficient and source term. Appl. Math. Comput. 2018, 331, 404–415. [Google Scholar] [CrossRef]
- Mahendran, R.; Subburayan, V. Fitted finite difference method for third order singularly perturbed delay differential equations of convection diffusion type. Int. J. Comput. Methods 2018, 15, 1840007. [Google Scholar] [CrossRef]
- Subburayan, V.; Mahendran, R. Asymptotic numerical method for third-order singularly perturbed convection diffusion delay differential equations. Comput. Appl. Math. 2020, 39, 1–21. [Google Scholar] [CrossRef]
- Subburayan, V.; Ramanujam, N. An initial value method for singularly perturbed third order delay differential equations. In Proceedings of the Conference “International Conference on Mathematical Sciences”, Chennai, India, 17–19 July 2014; Elsevier: Chennai, India, 2014; pp. 221–229, ISBN 978-93-5107-261-4. [Google Scholar]
- Toprakseven, S.; Natesan, S. An efficient weak Galerkin FEM for third-order singularly perturbed convection-diffusion differential equations on layer-adapted meshes. Appl. Numer. Math. 2024, 204, 130–146. [Google Scholar] [CrossRef]
- Zarin, H.; Roos, H.G.; Teofanov, L. A continuous interior penalty finite element method for a third-order singularly perturbed boundary value problem. Comput. Appl. Math. 2016, 37, 175–190. [Google Scholar] [CrossRef]
- Valarmathi, S.; Ramanujam, N. A computational method for solving third order singularly perturbed ordinary differential equations. Appl. Math. Comput. 2002, 129, 345–373. [Google Scholar]
- Valanarasu, T.; Ramanujam, N. An asymptotic numerical method for singularly perturbed third-order ordinary differential equations with a weak interior layer. Int. J. Comput. Math. 2007, 84, 333–346. [Google Scholar] [CrossRef]
- Subburayan, V.; Mahendran, R. Robust computational method for singularly perturbed first order ordinary differential difference equations with piecewise history function. Glob. J. Pure Appl. Math. 2016, 12, 16–20. [Google Scholar]
- Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1996. [Google Scholar]
N (Number of Grid Points) | |||||||
---|---|---|---|---|---|---|---|
6.1253 × 10−2 | 2.6227 × 10−2 | 1.4018 × 10−2 | 7.7693 × 10−3 | 4.3070 × 10−3 | 2.3737 × 10−3 | 1.4074 × 10−3 | |
1.2237 | 9.0377 × 10−1 | 8.5145 × 10−1 | 8.5112 × 10−1 | 8.5956 × 10−1 | 7.5410 × 10−1 | - | |
6.1454 × 10−2 | 5.4412 × 10−2 | 4.6333 × 10−2 | 3.6919 × 10−2 | 2.6322 × 10−2 | 1.7061 × 10−2 | 1.1023 × 10−2 | |
1.7557 × 10−1 | 2.3189 × 10−1 | 3.2770 × 10−1 | 4.8805 × 10−1 | 6.2556 × 10−1 | 6.3018 × 10−1 | - |
N (Number of Grid Points) | |||||||
---|---|---|---|---|---|---|---|
6.7014 × 10−2 | 3.0316 × 10−2 | 1.2929 × 10−2 | 6.3722 × 10−3 | 3.1685 × 10−3 | 1.5794 × 10−3 | 7.8833 × 10−4 | |
1.1444 | 1.2294 | 1.0208 | 1.0080 | 1.0044 | 1.0025 | - | |
3.6321 × 10−2 | 2.9443 × 10−2 | 1.4043 × 10−2 | 1.0222 × 10−2 | 4.9754 × 10−3 | 3.1677 × 10−3 | 1.7172 × 10−3 | |
3.0289 × 10−1 | 1.0681 | 4.5815 × 10−1 | 1.0388 | 6.5137 × 10−1 | 8.8338 × 10−1 | - |
N (Number of Grid Points) | |||||||
---|---|---|---|---|---|---|---|
9.2514 × 10−2 | 4.0526 × 10−2 | 1.8866 × 10−2 | 9.5490 × 10−3 | 5.1640 × 10−3 | 2.7901 × 10−3 | 1.6128 × 10−3 | |
1.1908 | 1.1030 | 9.8238 × 10−1 | 8.8686 × 10−1 | 8.8819 × 10−1 | 7.9071 × 10−1 | - | |
6.0392 × 10−2 | 5.4616 × 10−2 | 4.7298 × 10−2 | 4.0200 × 10−2 | 2.8992 × 10−2 | 1.9395 × 10−2 | 1.2678 × 10−2 | |
1.4504 × 10−1 | 2.0753 × 10−1 | 2.3460 × 10−1 | 4.7152 × 10−1 | 5.7999 × 10−1 | 6.1335 × 10−1 | - |
N (Number of Grid Points) | |||||||
---|---|---|---|---|---|---|---|
9.9453 × 10−2 | 4.6997 × 10−2 | 2.2824 × 10−2 | 1.1243 × 10−2 | 5.5779 × 10−3 | 2.7774 × 10−3 | 1.3855 × 10−3 | |
1.0815 | 1.0420 | 1.0216 | 1.0112 | 1.0060 | 1.0033 | - | |
2.3409 × 10−2 | 1.8094 × 10−2 | 9.0293 × 10−3 | 6.4286 × 10−3 | 3.2111 × 10−3 | 2.0205 × 10−3 | 1.0943 × 10−3 | |
3.7157 × 10−1 | 1.0028 | 4.9010 × 10−1 | 1.0014 | 6.6836 × 10−1 | 8.8465 × 10−1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, M.; Sethurathinam, S.; Veerasamy, S.; Agarwal, R.P. A Computational Study on Two-Parameter Singularly Perturbed Third-Order Delay Differential Equations. Computation 2025, 13, 24. https://doi.org/10.3390/computation13020024
Rajendran M, Sethurathinam S, Veerasamy S, Agarwal RP. A Computational Study on Two-Parameter Singularly Perturbed Third-Order Delay Differential Equations. Computation. 2025; 13(2):24. https://doi.org/10.3390/computation13020024
Chicago/Turabian StyleRajendran, Mahendran, Senthilkumar Sethurathinam, Subburayan Veerasamy, and Ravi P. Agarwal. 2025. "A Computational Study on Two-Parameter Singularly Perturbed Third-Order Delay Differential Equations" Computation 13, no. 2: 24. https://doi.org/10.3390/computation13020024
APA StyleRajendran, M., Sethurathinam, S., Veerasamy, S., & Agarwal, R. P. (2025). A Computational Study on Two-Parameter Singularly Perturbed Third-Order Delay Differential Equations. Computation, 13(2), 24. https://doi.org/10.3390/computation13020024