Unbiased Finite Element Mesh Delaunay Constrained Triangulation Applied to 2D Images with High Morphological Complexity Using Mathematical Morphology Tools Part 1: Binary Images
Abstract
:1. Introduction
2. Delaunay Constraint Triangulation of 2D Binary Images
2.1. Choice of a Binary 2D Image
2.2. Image Contouring Using Morphological Tools
2.3. Sample Points on the Morphological Gradient Image
2.4. Detection of Remarkable Points on the Image Contour
2.4.1. Remarkable Points on the Convex Parts of X
2.4.2. Skeletonization of X
2.4.3. Detection of Simple Points on
2.4.4. Remarkable Points on the Concave Parts of X
2.5. Construction of the Contour Vectors of the PSLG
2.5.1. Position of the Problem—Remark on Euclidean Metrics
2.5.2. Sampling of PSLG Points by Successive Geodesic Morphological Dilation
2.6. Adaptive Sampling of Triangulation Points
2.7. Location of Points in X
2.8. Results of Delaunay Constraint Morphological Triangulation
2.9. Triangulation of the Set’s Complementary X
2.10. Controlled Densification of the Triangulation
2.10.1. Morphological Densification
2.10.2. Local Densification of X
2.10.3. Local Densification of the Contour X
2.10.4. Union of Densities and Triangulation
2.10.5. Internal De-Densification Control
2.10.6. Hausdorff Distance
2.10.7. Comparison with the Marching Square Technique
3. Application to Microstructure Images from Scientific Fields
4. Conclusions
5. Future Work: Labeled Case (Part 2)
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Langer, S.A.; Fuller, E.R.; Carter, W.C. 00f: An image-based finite-element analysis of material microstructures. Comput. Sci. Eng. 2001, 3, 15–23. [Google Scholar] [CrossRef]
- Zhao, J.X.; Thierry, C.; Decencière, E.; Jeulin, D.; Cárdenas-Peña, D.; Silva, L. Direct multiphase mesh generation from 3D images using anisotropic mesh adaptation and a redistancing equation. Comput. Methods Appl. Mech. Eng. 2016, 309, 288–306. [Google Scholar] [CrossRef]
- Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graph. 1987, 21, 163–169. [Google Scholar] [CrossRef]
- Jia, X.; Li, K.; Cheng, J. Computing the Intersection of Two Rational Surfaces Using Matrix Representations. Comput.-Aided Des. 2022, 150, 103303. [Google Scholar] [CrossRef]
- Thiagarajan, V.; Shapiro, V. Adaptively weighted numerical integration over arbitrary domains. Comput. Math. Appl. 2014, 67, 1682–1702. [Google Scholar] [CrossRef]
- Shewchuk, J.R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In Applied Computational Geometry Towards Geometric Engineering; Lin, M.C., Manocha, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 203–222. [Google Scholar]
- Khoury, M.; Shewchuk, J.R. Restricted Constrained Delaunay Triangulations. In Proceedings of the 37th International Symposium on Computational Geometry (SoCG 2021), Buffalo, NY, USA, 7–11 June 2021; Buchin, K., Colin de Verdière, E., Eds.; Dagstuhl: Wadern, Germany, 2021. Leibniz International Proceedings in Informatics (LIPIcs). Volume 189, pp. 49:1–49:16. [Google Scholar] [CrossRef]
- Rassineux, A. 3D mesh adaptation. Optimization of tetrahedral meshes by advancing front technique. Comput. Methods Appl. Mech. Eng. 1997, 141, 335–354. [Google Scholar] [CrossRef]
- Rassineux, A. Robust conformal adaptive meshing of complex textile composites unit cells. Compos. Struct. 2022, 279, 114740. [Google Scholar] [CrossRef]
- Yang, Z.; Seo, Y.H.; wan Kim, T. Adaptive triangular-mesh reconstruction by mean-curvature-based refinement from point clouds using a moving parabolic approximation. Comput.-Aided Des. 2010, 42, 2–17. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Xin, S.; Gao, X.; Wang, W.; Tu, C. Restricted Delaunay Triangulation for Explicit Surface Reconstruction. ACM Trans. Graph. 2022, 41, 180. [Google Scholar] [CrossRef]
- Grošelj, J.; Kapl, M.; Knez, M.; Takacs, T.; Vitrih, V. A super-smooth C1 spline space over planar mixed triangle and quadrilateral meshes. Comput. Math. Appl. 2020, 80, 2623–2643. [Google Scholar] [CrossRef]
- Börgers, C. Generalized delaunay triangulations of non-convex domains. Comput. Math. Appl. 1990, 20, 45–49. [Google Scholar] [CrossRef]
- Paul Chew, L. Constrained delaunay triangulations. Algorithmica 1989, 4, 97–108. [Google Scholar] [CrossRef]
- Lantuejoul, C. Geostatistical Simulation: Models and Algorithms; Collezione Legale Pirola; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Khan, D.; Yan, D.M.; Wang, Y.; Hu, K.; Ye, J.; Zhang, X. High-quality 2D mesh generation without obtuse and small angles. Comput. Math. Appl. 2018, 75, 582–595. [Google Scholar] [CrossRef]
- Hinderink, S.; Mandad, M.; Campen, M. Angle-bounded 2D mesh simplificationImage 1. Comput. Aided Geom. Des. 2022, 95, 102085. [Google Scholar] [CrossRef]
- Gledel, V.; Parreau, A. Identification of points using disks. Discret. Math. 2019, 342, 256–269. [Google Scholar] [CrossRef]
- Andriyanov, N.A.; Dementyiev, V.E. Determination of borders between objects on satellite images using a two-proof doubly stochastic filtration. J. Phys. Conf. Ser. 2019, 1353, 012006. [Google Scholar] [CrossRef]
- Guaragnella, C.; Rizzi, M. Simple and Accurate Border Detection Algorithm for Melanoma Computer Aided Diagnosis. Diagnostics 2020, 10, 423. [Google Scholar] [CrossRef] [PubMed]
- Lisowska, A. Efficient Edge Detection Method for Focused Images. Appl. Sci. 2022, 12, 11668. [Google Scholar] [CrossRef]
- Soille, P. Morphological Image Analysis: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Jordan, C. Cours d’Analyse de l’École Polytechnique; Cambridge University Press: Cambridge, UK, 1887; pp. 587–594. [Google Scholar]
- Huttenlocher, D.; Klanderman, G.; Rucklidge, W. Comparing images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 850–863. [Google Scholar] [CrossRef]
- Aspert, N.; Santa-Cruz, D.; Ebrahimi, T. MESH: Measuring errors between surfaces using the Hausdorff distance. In Proceedings of the 2002 IEEE International Conference on Multimedia and Expo, 2002. ICME ’02. Proceedings, Lausanne, Switzerland, 26–29 August 2002; Volume 1, pp. 705–708. [Google Scholar] [CrossRef]
- Taubin, G. A signal processing approach to fair surface design. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, ACM, Los Angeles, CA, USA, 6–11 August 1995; pp. 351–358. [Google Scholar]
- Fábián, G. Generalized Savitzky–Golay filter for smoothing triangular meshes. Comput. Aided Geom. Des. 2023, 100, 102167. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
N’Guyen, F.; Kanit, T.; Imad, A. Unbiased Finite Element Mesh Delaunay Constrained Triangulation Applied to 2D Images with High Morphological Complexity Using Mathematical Morphology Tools Part 1: Binary Images. Computation 2025, 13, 52. https://doi.org/10.3390/computation13020052
N’Guyen F, Kanit T, Imad A. Unbiased Finite Element Mesh Delaunay Constrained Triangulation Applied to 2D Images with High Morphological Complexity Using Mathematical Morphology Tools Part 1: Binary Images. Computation. 2025; 13(2):52. https://doi.org/10.3390/computation13020052
Chicago/Turabian StyleN’Guyen, Franck, Toufik Kanit, and Abdellatif Imad. 2025. "Unbiased Finite Element Mesh Delaunay Constrained Triangulation Applied to 2D Images with High Morphological Complexity Using Mathematical Morphology Tools Part 1: Binary Images" Computation 13, no. 2: 52. https://doi.org/10.3390/computation13020052
APA StyleN’Guyen, F., Kanit, T., & Imad, A. (2025). Unbiased Finite Element Mesh Delaunay Constrained Triangulation Applied to 2D Images with High Morphological Complexity Using Mathematical Morphology Tools Part 1: Binary Images. Computation, 13(2), 52. https://doi.org/10.3390/computation13020052