Innovative Quantum Encryption Method for RGB Images Based on Bit-Planes and Logistic Maps
Abstract
:1. Introduction
2. Preliminaries
2.1. Bit and Qubits
2.2. Quantum Gates and Quantum Circuits
3. Our Proposed Model for Quantum Encryption Method for RGB Images Based on Bit-Planes and Logistic Maps
3.1. BRQI for RGB Color Images
3.2. Our Model for Rgb Images Encryption Based on Bit-Planes and Logistic Maps
3.2.1. Image Scrambling Process
- 1.
- Swapping bit-planes.
- 2.
- Transferring image bit-planes.
- 3.
- Color complement.
- 4.
- Applying logistic map:
3.2.2. Recover Encrypted Image
4. Analyzing the Proposed Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morkel, T.; Eloff, .H.; Olivier, M.S. An Overview of Image Steganography. In Information Security South Africa; University of Pretoria: Pretoria, South Africa, 2005; pp. 1–11. [Google Scholar]
- Pahati, O.J. Confounding Carnivore: How to Protect Your Online Privacy. AlterNet 2001, 7–16. [Google Scholar]
- Singh, L.D.; Singh, K.M. Image Encryption Using Elliptic Curve Cryptography. Procedia Comput. Sci. 2015, 54, 287–294. [Google Scholar] [CrossRef]
- Lukac, R.; Plataniotis, K.N. Bit-Level-Based Secret Sharing for Image Encryption. Pattern Recognit. 2005, 38, 873–882. [Google Scholar] [CrossRef]
- Mishra, R.; Bhanodiya, P. A review on steganography and cryptography. In Proceedings of the 2015 International Conference on Advances in Computer Engineering and Applications, Ghaziabad, India, 19–20 March 2015; pp. 119–122. [Google Scholar] [CrossRef]
- Kamali, S.H.; Shakerian, R.; Hedayati, M.; Rahmani, M. A New Modified Version of Advanced Encryption Standard Based Algorithm for Image Encryption. In Proceedings of the International Conference on Electronics and Information Engineering, Kyoto, Japan, 1–3 August 2010. [Google Scholar]
- Jiang, N.; Wang, L.; Wu, W. Quantum Hilbert Image Scrambling. Int. J. Theor. Phys. 2014, 53, 2655–2663. [Google Scholar] [CrossRef]
- Jiang, N.; Wu, W.; Wang, L. The Quantum Realization of Arnold and Fibonacci Image Scrambling. Quantum Inf. Process. 2014, 13, 2179–2192. [Google Scholar] [CrossRef]
- Sankpal, P.R.; Vijaya, P.A. Image Encryption Using Chaotic Maps: A Survey. In Proceedings of the Fifth International Conference on Signal and Image Processing, Bangalore, India, 8–10 January 2014. [Google Scholar]
- Chen, J.X.; Zhu, Z.L.; Liu, Z.; Fu, C.; Zhang, L.B.; Yu, H. A Novel Double-Image Encryption Scheme Based on Cross-Image Pixel Scrambling in Gyrator Domains. Opt. Express 2014, 22, 10343–10356. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.W.; Kwok, B.S.H.; Yuen, C.H. An Efficient Diffusion Approach for Chaos-Based Image Encryption. Chaos Solitons Fractals 2009, 42, 1877–1888. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, X.; Xu, P.; Tian, J. Analysis and Improvement of the Watermark Strategy for Quantum Images Based on Quantum Fourier Transform. Quantum Inf. Process. 2013, 12, 2971–2990. [Google Scholar] [CrossRef]
- Li, H.; Chen, X.; Xia, H.; Liang, Y.; Zhou, Z. A Quantum Image Representation Based on Bitplanes. Proc. IEEE 2018, 6, 62396–62404. [Google Scholar] [CrossRef]
- Yan, F.; Iliyasu, A.M.; Venegas-Andraca, S.E. A Survey of Quantum Image Representations. Quantum Inf. Process. 2016, 15, 1065–1085. [Google Scholar] [CrossRef]
- Erhard, M.; Krenn, M.; Zeilinger, A. Advances in High-Dimensional Quantum Entanglement. Nat. Rev. Phys. 2020, 2, 365–381. [Google Scholar] [CrossRef]
- Vedral, V. Quantum Entanglement. Nat. Phys. 2014, 10, 256–258. [Google Scholar] [CrossRef]
- Delaubert, V.; Treps, N.; Fabre, C.; Bachor, H.A.; Réfrégier, P. Quantum Limits in Image Processing. EPL (Europhys. Lett.) 2008, 81, 44001. [Google Scholar] [CrossRef]
- Venegas-Andraca, S.E.; Bose, S. Storing, Processing, and Retrieving an Image Using Quantum Mechanics. In Quantum Information and Computation; SPIE: Bellingham, DC, USA, 2003; Volume 5105, pp. 137–147. [Google Scholar]
- Chakraborty, S.; Mandal, S.B.; Shaikh, S.H. Quantum Image Processing: Challenges and Future Research Issues. Int. J. Inf. Technol. 2018, 10, 475–489. [Google Scholar] [CrossRef]
- Ventura, D.; Martinez, T. Quantum Associative Memory with Exponential Capacity. In Proceedings of the IEEE International Joint Conference on Neural Networks, World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; Volume 1, pp. 509–513. [Google Scholar]
- Le, P.Q.; Dong, F.; Hirota, K. A Flexible Representation of Quantum Images for Polynomial Preparation, Image Compression, and Processing Operations. Quantum Inf. Process. 2011, 10, 63–84. [Google Scholar] [CrossRef]
- Li, H.S.; Zhu, Q.; Li, M.C.; Ian, H. Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 2014, 273, 212–232. [Google Scholar] [CrossRef]
- Sun, B.; Iliyasu, A.M.; Yan, F.; Dong, F.; Hirota, K. An RGB Multi-Channel Representation for Images on Quantum Computers. J. Adv. Comput. Intell. Intell. Inform. 2013, 17, 404–417. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, K.; Gao, Y.; Wang, M. NEQR: A Novel Enhanced Quantum Representation of Digital Images. Quantum Inf. Process. 2013, 12, 2833–2860. [Google Scholar] [CrossRef]
- Abdolmaleky, M.; Naseri, M.; Batle, J.; Farouk, A.; Gong, L.-H. Red-Green-Blue multi-channel quantum representation of digital images. Optik 2017, 128, 121–132. [Google Scholar] [CrossRef]
- Li, H.S.; Fan, P.; Xia, H.Y.; Peng, H.; Song, S. Quantum Implementation Circuits of Quantum Signal Representation and Type Conversion. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 341–354. [Google Scholar] [CrossRef]
- Heidari, S.; Naseri, M. A Novel LSB Based Quantum Watermarking. Int. J. Theor. Phys. 2016, 55, 4205–4218. [Google Scholar] [CrossRef]
- Naseri, M.; Heidari, S.; Baghfalaki, M.; Fatahi, N.; Gheibi, R.; Batle, J.; Farouk, A.; Habibi, A. A new secure quantum watermarking scheme. Optik 2017, 139, 77–86. [Google Scholar] [CrossRef]
- U.S. District Court Rules in Favor of Copyright Protection for Standards Incorporated by Reference into Federal Regulations. Available online: www.ansi.org (accessed on 24 November 2017).
- Zhang, L.; Liao, X.; Wang, X. An Image Encryption Approach Based on Chaotic Maps. Inf. Sci. 2005, 24, 237–245. [Google Scholar] [CrossRef]
- Fridrich, J. Image Encryption Based on Chaotic Maps. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 12–15 October 1997; pp. 1105–1110. [Google Scholar]
- Peng, J.; Jin, S.; Chen, G.; Yang, Z.; Liao, X. An Image Encryption Scheme Based on Chaotic Map. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; pp. 595–599. [Google Scholar] [CrossRef]
- Jakobson, M.V. Absolutely Continuous Invariant Measures for One-Parameter Families of One-Dimensional Maps. Commun. Math. Phys. 1981, 81, 39–88. [Google Scholar] [CrossRef]
- Kwok, H.S.; Tang, W.K.S. A Fast Image Encryption System Based on Chaotic Maps with Finite Precision Representation. Chaos Solitons Fractals 2007, 33, 1919–1928. [Google Scholar] [CrossRef]
- May, R.M. Simple Mathematical Models with Very Complicated Dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Pareek, N.K.; Patidar, V.; Sud, K.K. Image Encryption Using Chaotic Logistic Map. Image Vis. Comput. 2006, 24, 926–934. [Google Scholar] [CrossRef]
- Thum, C. Measurement of the Entropy of an Image with Application to Image Focusing. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 31, 203–211. [Google Scholar] [CrossRef]
- Wu, X.; Wang, K.; Wang, X.; Kan, H. Lossless Chaotic Color Image Cryptosystem Based on DNA Encryption and Entropy. Nonlinear Dyn. 2017, 87, 855–875. [Google Scholar] [CrossRef]
- Cheng, H.D.; Jiang, X.H.; Wang, J. Color Image Segmentation Based on Histogram Thresholding and Region Merging. Pattern Recognit. 2002, 35, 373–393. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon Entropy Measure with Statistical Tests for Image Randomness. Inf. Sci. 2013, 222, 323–342. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Pisarchik, A.N.; Zanin, M. Image Encryption with Chaotically Coupled Chaotic Maps. Phys. D Nonlinear Phenom. 2008, 237, 2638–2648. [Google Scholar] [CrossRef]
- Rhouma, R.; Meherzi, S.; Belghith, S. OCML-Based Colour Image Encryption. Inf. Sci. 2009, 40, 309–318. [Google Scholar] [CrossRef]
- Mackenzie, C.E. Coded Character Sets: Overview of Image Steganography, 1st ed.; The Systems Programming Series; Addison-Wesley Publishing Company, Inc.: Boston, MA, USA, 1980. [Google Scholar]
- Abdullah, A.H.; Enayatifar, R.; Lee, M. A Hybrid Genetic Algorithm and Chaotic Function Model for Image Encryption. Appl. Math. Comput. 2012, 66, 185–198. [Google Scholar] [CrossRef]
QIR | Qubits (GI) | Qubits (CI) | Pixel Encoding |
---|---|---|---|
FRQI | 2n + 1 | --- | Amplitude |
MCQI | --- | 2n + 3 | Amplitude |
NASS | 2n | 2n | Amplitude |
NEQR | 2n + 8 | --- | Basis states |
QMCR | --- | 2n + 24 | Basis states |
GNEQR | 2n + 8 | 2n + 24 | Basis states |
BRQI | 2n + 4 | 2n + 6 | Basis states |
Gate Type | Circuit | Matrix |
---|---|---|
NOT | ||
Identity | ||
Hadamard | ||
Pauli-X | ||
Pauli-Y | ||
Pauli-Z | ||
Gate Type | Circuit | Matrix | |
---|---|---|---|
CNOT | |||
Swap | |||
0CNOT | |||
Toffoli |
Image | Red | Green | Blue | Average | |
---|---|---|---|---|---|
Lena | Plain | 7.26647529 | 7.57641548 | 6.99698477 | 7.75230230 |
encrypted | 7.99706260 | 7.99747581 | 7.99666707 | 7.99914383 | |
Image-1 | Plain | 4.78364119 | 4.73370893 | 5.05956128 | 4.86826736 |
encrypted | 7.99166776 | 7.99227987 | 7.99282306 | 7.99439984 | |
Image-2 | Plain | 4.67421401 | 4.85111012 | 5.01229852 | 4.87986000 |
encrypted | 7.99187429 | 7.99281031 | 7.99301983 | 7.99462144 | |
Image-3 | Plain | 7.64643957 | 7.33613706 | 7.64931401 | 7.66549665 |
encrypted | 7.99729804 | 7.99722871 | 7.99718760 | 7.99893469 | |
Image-4 | Plain | 7.36835372 | 7.63346757 | 7.14444474 | 7.74964698 |
encrypted | 7.99633432 | 7.99722933 | 7.99718431 | 7.99910385 | |
Image-5 | Plain | 7.91513367 | 7.73168494 | 7.64447837 | 7.88854042 |
encrypted | 7.99727711 | 7.99705858 | 7.99729900 | 7.99914117 |
Image | Red | Green | Blue | ||
---|---|---|---|---|---|
Lena | Plain | horizontal | 0.94496092 | 0.94394613 | 0.90382255 |
vertical | 0.97160053 | 0.97138740 | 0.94575043 | ||
diagonal | 0.92060182 | 0.92063101 | 0.86947909 | ||
Encrypted | horizontal | 0.04684634 | 0.05272363 | 0.05873554 | |
vertical | −0.08600054 | −0.07969069 | −0.06718450 | ||
diagonal | 0.03889228 | 0.03631901 | 0.05433776 | ||
Image-1 | Plain | horizontal | 0.92722854 | 0.92541146 | 0.92171877 |
vertical | 0.93122544 | 0.92875145 | 0.92504564 | ||
diagonal | 0.88693262 | 0.88339981 | 0.87809024 | ||
Encrypted | horizontal | −0.04400776 | −0.04404985 | −0.03493985 | |
vertical | −0.02690263 | −0.02770975 | −0.01463662 | ||
diagonal | −0.04237329 | −0.04804702 | −0.03113912 | ||
Image-2 | Plain | horizontal | 0.79642455 | 0.81825466 | 0.82329247 |
vertical | 0.85224205 | 0.86751412 | 0.86920629 | ||
diagonal | 0.70727947 | 0.73512158 | 0.74101511 | ||
Encrypted | horizontal | −0.03844896 | −0.03945518 | −0.02958604 | |
vertical | −0.03513343 | −0.04033299 | −0.02344154 | ||
diagonal | −0.03173505 | −0.03945518 | −0.02184033 | ||
Image-3 | Plain | horizontal | 0.93243145 | 0.89115097 | 0.93705562 |
vertical | 0.91626012 | 0.86801252 | 0.92639075 | ||
diagonal | 0.89600855 | 0.83303664 | 0.90363931 | ||
Encrypted | horizontal | 0.05921598 | 0.06870314 | 0.07175162 | |
vertical | −0.01380835 | −0.00194525 | 0.00106863 | ||
diagonal | 0.05774048 | 0.06055552 | 0.07260252 | ||
Image-4 | Plain | horizontal | 0.95116615 | 0.97288558 | 0.94465043 |
vertical | 0.95408423 | 0.97791858 | 0.95067943 | ||
diagonal | 0.92085361 | 0.95553869 | 0.91182653 | ||
Encrypted | horizontal | 0.03727045 | 0.04323486 | 0.04399785 | |
vertical | −0.08462279 | −0.07850834 | −0.07398065 | ||
diagonal | 0.03837588 | 0.03645186 | 0.04947882 | ||
Image-5 | Plain | horizontal | 0.91795308 | 0.90593869 | 0.95240375 |
vertical | 0.89809097 | 0.88392991 | 0.94136339 | ||
diagonal | 0.87193455 | 0.86353650 | 0.93517466 | ||
Encrypted | horizontal | 0.04486794 | 0.05486874 | 0.05032741 | |
vertical | −0.05127246 | −0.04212630 | −0.04436001 | ||
diagonal | 0.03982164 | 0.04169260 | 0.04825240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basiri, S.; Farhang Matin, L.; Naseri, M. Innovative Quantum Encryption Method for RGB Images Based on Bit-Planes and Logistic Maps. Computation 2025, 13, 56. https://doi.org/10.3390/computation13020056
Basiri S, Farhang Matin L, Naseri M. Innovative Quantum Encryption Method for RGB Images Based on Bit-Planes and Logistic Maps. Computation. 2025; 13(2):56. https://doi.org/10.3390/computation13020056
Chicago/Turabian StyleBasiri, Saeed, Laleh Farhang Matin, and Mosayeb Naseri. 2025. "Innovative Quantum Encryption Method for RGB Images Based on Bit-Planes and Logistic Maps" Computation 13, no. 2: 56. https://doi.org/10.3390/computation13020056
APA StyleBasiri, S., Farhang Matin, L., & Naseri, M. (2025). Innovative Quantum Encryption Method for RGB Images Based on Bit-Planes and Logistic Maps. Computation, 13(2), 56. https://doi.org/10.3390/computation13020056