Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control
Abstract
:1. Introduction
2. Case Setup and Numerical Methods
2.1. Case Setup
2.2. Numerical Methods
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DNS | direct numerical simulation |
LES | large eddy simulation |
MVG | micro-vortex generator |
NPLS | nano-tracer planar laser scattering |
PIV | particle image velocimetry |
RANS | Reynolds-averaged Navier–Stokes |
SWBLI | shock-wave boundary-layer interaction |
TVD | total variation diminishing |
WENO | weighted essentially non-oscillatory |
Nomenclature | |
density of the fluids | |
internal shear stress | |
internal energy per unit mass | |
pressure | |
temperature | |
thermal conductivity | |
dynamic viscosity | |
gas constant | |
ratio of specific heats | |
Mach number | |
Reynolds number based on momentum thickness | |
Prandtl number | |
MVG height | |
inflow boundary layer nominal thickness | |
inflow boundary layer displacement thickness | |
spanwise, normal, and streamwise coordinate axes | |
spanwise, normal, and streamwise velocity | |
Cartesian frames | |
curvilinear frames | |
Jacobian | |
Subscript | |
viscous | |
free stream |
References
- Wu, H.; Huang, W.; Yan, L.; Du, Z. Control Mechanism of Micro Vortex Generator and Secondary Recirculation Jet Combination in the Shock Wave/Boundary Layer Interaction. Acta Astronaut. 2022, 200, 56–76. [Google Scholar] [CrossRef]
- Saleem, M.; Karnam, A.; Rodriguez, O.; Liu, J.; Gutmark, E. Flow and Acoustic Fields Investigation of Noise Reduction by Micro Vortex Generators in Supersonic Nozzles. Phys. Fluids 2023, 35, 106111. [Google Scholar] [CrossRef]
- Liu, J.; Khine, Y.Y.; Saleem, M.; Lopez Rodriguez, O.; Gutmark, E. Supersonic Jet Noise Reduction Using Micro Vortex Generators. In Proceedings of the AIAA AVIATION 2021 FORUM, Virtual, 2–6 August 2021; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2021. [Google Scholar]
- Wu, H.; Huang, W.; Zhong, X.-Y.; Du, Z.-B. Study of the Streamwise Location of a Micro Vortex Generator for a Separation-Control Mechanism in Supersonic Flow. Phys. Fluids 2022, 34, 116115. [Google Scholar] [CrossRef]
- Sajeev, S.; Pal Singh Sandhu, J.; Ghosh, S.; Edwards, J.R. Effectiveness of Micro-Vortex Generators in Tandem in High-Speed Flows. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual, 15–19 June 2020; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2020. [Google Scholar]
- Lu, F.K.; Li, Q.; Liu, C. Microvortex Generators in High-Speed Flow. Prog. Aerosp. Sci. 2012, 53, 30–45. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, Q.; Xiang, X.; Xu, J. An Improved Micro-Vortex Generator in Supersonic Flows. Aerosp. Sci. Technol. 2015, 47, 210–215. [Google Scholar] [CrossRef]
- Anderson, B.; Tinapple, J.; Surber, L. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, CA, USA, 5–8 June 2006; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar]
- Babinsky, H.; Li, Y.; Pitt Ford, C.W. Microramp Control of Supersonic Oblique Shock-Wave/Boundary-Layer Interactions. AIAA J. 2009, 47, 668–675. [Google Scholar] [CrossRef]
- Sun, Z.; Scarano, F.; van Oudheusden, B.W.; Schrijer, F.F.J.; Yan, Y.; Liu, C. Numerical and Experimental Investigations of the Supersonic Microramp Wake. AIAA J. 2014, 52, 1518–1527. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.; Zhao, Y.; Fan, X.; Wang, C. Experimental Investigation of the Micro-Ramp Based Shock Wave and Turbulent Boundary Layer Interaction Control. Phys. Fluids 2012, 24, 055110. [Google Scholar] [CrossRef]
- Rizzetta, D.P.; Visbal, M.R.; Gaitonde, D.V. Large-Eddy Simulation of Supersonic Compression-Ramp Flow by High-Order Method. AIAA J. 2001, 39, 2283–2292. [Google Scholar] [CrossRef]
- Kaenel, R.V.; Kleiser, L.; Adams, N.A.; Vos, J.B. Large-Eddy Simulation of Shock-Turbulence Interaction. AIAA J. 2004, 42, 2516–2528. [Google Scholar] [CrossRef]
- Li, Q.; Yan, Y.; Wang, X.; Liu, C. The Interaction between Vortex Rings and Oblique Shocks by the MVG Controlled Ramp Flow at M = 2.5. In Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 4–7 January 2011; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2011. [Google Scholar]
- Xue, D.; Chen, Z.; Jiang, X.; Fan, B. Numerical Investigations on the Wake Structures of Micro-Ramp and Micro-Vanes. Fluid Dyn. Res. 2014, 46, 015505. [Google Scholar] [CrossRef]
- Wang, B.; Liu, W.D.; Sun, M.B.; Zhao, Y.X. Fluid Redistribution in the Turbulent Boundary Layer Under the Microramp Control. AIAA J. 2015, 53, 3777–3787. [Google Scholar] [CrossRef]
- Nilavarasan, T.; Joshi, G.N.; Misra, A.; Manisankar, C.; Verma, S.B. Control of Flow Separation over an Axisymmetric Flared Body Using Ramped Vanes. Eur. J. Mech. B/Fluids 2022, 95, 160–177. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, Q.; Shao, X. Tip Vortex Cavitation Control by the Micro Vortex Generator. Phys. Fluids 2025, 37, 023328. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, L.; Li, Q.; Liu, C. Numerical Study of Micro-Ramp Vortex Generator for Supersonic Ramp Flow Control at Mach 2.5. Shock Waves 2017, 27, 79–96. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, Y.; Chen, C.; Wu, Q.; Kwembe, T.A.; Wu, R. Modal Analysis on MVG Controlled Supersonic Flow at Different Mach Numbers. Processes 2022, 10, 1456. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, Y.; Chen, C.; Cotton, H.A.; Serrano, A. Numerical Study on the Ring-like Vortex Structure Generated by MVG in High-Speed Flows with Different Mach Numbers. Jpn. J. Indust. Appl. Math. 2022, 39, 3–18. [Google Scholar] [CrossRef]
- Lu, F.; Pierce, A.; Shih, Y. Experimental Study of near Wake of Micro Vortex Generators in Supersonic Flow. In Proceedings of the 40th Fluid Dynamics Conference and Exhibit, Chicago, IL, USA, 28 June–1 July 2010; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010. [Google Scholar]
- Zhu, Y.; Yi, S.; Ding, H.; Nie, W.; Zhang, Z. Structures and Aero-Optical Effects of Supersonic Flow over a Backward Facing Step with Vortex Generators. Eur. J. Mech. B/Fluids 2019, 74, 302–311. [Google Scholar] [CrossRef]
- Giepman, R.H.M.; Srivastava, A.; Schrijer, F.F.J.; Van Oudheusden, B.W. Mach and Reynolds Number Effects on the Wake Properties of Microramps. AIAA J. 2016, 54, 3481–3494. [Google Scholar] [CrossRef]
- Sun, Z.; Schrijer, F.F.J.; Scarano, F.; van Oudheusden, B.W. The Three-Dimensional Flow Organization Past a Micro-Ramp in a Supersonic Boundary Layer. Phys. Fluids 2012, 24, 055105. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, C. Comparison of Liutex and Other Vortex Identification Methods Based on Vortex Models. In Proceedings of the Vortex Workshop; Wang, Y., Liu, C., Li, Y., Eds.; Springer Proceedings in Physics; Springer Nature: Singapore, 2024; Volume 309, pp. 20–33. ISBN 978-981-97-8607-7. [Google Scholar]
Case 0 | Case 1 | Case 2 | Case 3 | |
---|---|---|---|---|
- | ||||
860 | 860 | 930 | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Yang, Y.; Yan, Y. Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control. Computation 2025, 13, 101. https://doi.org/10.3390/computation13040101
Chen C, Yang Y, Yan Y. Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control. Computation. 2025; 13(4):101. https://doi.org/10.3390/computation13040101
Chicago/Turabian StyleChen, Caixia, Yong Yang, and Yonghua Yan. 2025. "Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control" Computation 13, no. 4: 101. https://doi.org/10.3390/computation13040101
APA StyleChen, C., Yang, Y., & Yan, Y. (2025). Computational Analysis of Tandem Micro-Vortex Generators for Supersonic Boundary Layer Flow Control. Computation, 13(4), 101. https://doi.org/10.3390/computation13040101