Applications of Computational Modelling and Simulation of Porous Medium in Tissue Engineering
Abstract
:1. Introduction
2. Cell Culture
2.1. Cell Culture under Static Conditions
2.2. Cell Culture Involving Fluid Flow
3. Modeling Porous Medium Properties
3.1. Incorporating Permeability
3.2. Incorporating Scaffold Degradation
3.3. Incorporating Scaffold Deformation
4. Validation Techniques
5. Conclusion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Place, E.S.; Evans, N.D.; Stevens, M.M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Astashkina, A.; Mann, B.; Grainger, D.W. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol. Ther. 2012, 134, 82–106. [Google Scholar] [CrossRef] [PubMed]
- Ravi, M.; Paramesh, V.; Kaviya, S.R.; Anuradha, E.; Solomon, F.D. 3D cell culture systems: Advantages and applications. J. Cell. Physiol. 2015, 230, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Haycock, J. 3D cell culture: A review of current approaches and techniques. In 3D Cell Culture; Haycock, J.W., Ed.; Humana Press: New York, NY, USA, 2011; pp. 1–15. [Google Scholar]
- Sander, E.A.; Stylianopoulos, T.; Tranquillo, R.T.; Barocas, V.H. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Natl. Acad. Sci. USA 2009, 106, 17675–17680. [Google Scholar] [CrossRef] [PubMed]
- ElectrospinningCompany. Why 3d Cell Culture? Availabe online: http://www.electrospinning.co.uk/why-3d-cell-culture/ (accessed on 1 February 2016).
- Pal, A.; Kleer, C.G. Three dimensional cultures: A tool to study normal acinar architecture vs. Malignant transformation of breast cells. J. Vis. Exp. 2014, 86. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Shamir, E.R.; Ewald, A.J. Three-dimensional organotypic culture: Experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Granot, Y.; Rubinsky, B. Mass transfer model for drug delivery in tissue cells with reversible electroporation. Int. J. Heat Mass Transf. 2008, 51, 5610–5616. [Google Scholar] [CrossRef] [PubMed]
- Patrachari, A.R.; Podichetty, J.T.; Madihally, S.V. Application of computational fluid dynamics in tissue engineering. J. Biosci. Bioeng. 2012, 114, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Curcio, E.; Macchiarini, P.; De Bartolo, L. Oxygen mass transfer in a human tissue-engineered trachea. Biomaterials 2010, 31, 5131–5136. [Google Scholar] [CrossRef] [PubMed]
- Podichetty, J.T.; Dhane, D.V.; Madihally, S.V. Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration. Biotechnol. Prog. 2012, 28, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Vunjak-Novakovic, G.; Martin, I.; Obradovic, B.; Treppo, S.; Grodzinsky, A.J.; Langer, R.; Freed, L.E. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 1999, 17, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Wendt, D.; Heberer, M. The role of bioreactors in tissue engineering. Trends Biotechnol. 2004, 22, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.W.; Grigg, R. A criterion for non-darcy flow in porous media. Transp. Porous Media 2006, 63, 57–69. [Google Scholar] [CrossRef]
- Pennella, F.; Cerino, G.; Massai, D.; Gallo, D.; Falvo D’Urso Labate, G.; Schiavi, A.; Deriu, M.A.; Audenino, A.; Morbiducci, U. A survey of methods for the evaluation of tissue engineering scaffold permeability. Ann. Biomed. Eng. 2013, 41, 2027–2041. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.A.; Fleury, M.E. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 2007, 9, 229–256. [Google Scholar] [CrossRef] [PubMed]
- Podichetty, J.T.; Bhaskar, P.R.; Khalf, A.; Madihally, S.V. Modeling pressure drop using generalized scaffold characteristics in an axial-flow bioreactor for soft tissue regeneration. Ann. Biomed. Eng. 2014, 42, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Podichetty, J.T.; Madihally, S.V. Modeling of porous scaffold deformation induced by medium perfusion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 737–748. [Google Scholar] [CrossRef] [PubMed]
- O'Brien, F.J.; Harley, B.A.; Waller, M.A.; Yannas, I.V.; Gibson, L.J.; Prendergast, P.J. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care 2007, 15, 3–17. [Google Scholar] [PubMed]
- Loh, Q.L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.F.; Chua, C.K.; Sudarmadji, N.; Yeong, W.Y. Engineering functionally graded tissue engineering scaffolds. J. Mech. Behav. Biomed. Mater. 2008, 1, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Sogutlu, S.; Koc, B. Stochastic modeling of tissue engineering scaffolds with varying porosity levels. Computer-Aided Des. Appl. 2007, 4, 661–670. [Google Scholar] [CrossRef]
- Hollister, S.J.; Lin, C.Y. Computational design of tissue engineering scaffolds. Comput. Methods Appl. Mech. Eng. 2007, 196, 2991–2998. [Google Scholar] [CrossRef]
- Sanz-Herrera, J.A.; Garcia-Aznar, J.M.; Doblare, M. A mathematical approach to bone tissue engineering. Philos. Trans. R. Soc. A Math Phys. Eng. Sci. 2009, 367, 2055–2078. [Google Scholar] [CrossRef] [PubMed]
- Khoda, A.K.; Ozbolat, I.T.; Koc, B. Engineered tissue scaffolds with variational porous architecture. J. Biomech. Eng. 2011, 133, 011001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Vaughan, T.; McNamara, L. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold. Biomech. Modeling Mechanobiol. 2015, 14, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, S.; Li, Q. Mathematical modeling of degradation for bulk-erosive polymers: Applications in tissue engineering scaffolds and drug delivery systems. Acta Biomater. 2011, 7, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, R.N.; Ronan, W.; Rochev, Y.; McHugh, P. Modelling the degradation and elastic properties of poly(lactic-co-glycolic acid) films and regular open-cell tissue engineering scaffolds. J. Mech. Behav. Biomed. Mate. 2016, 54, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, J.; Han, X.; Sinka, C.; Ding, L. A phenomenological model for the degradation of biodegradable polymers. Biomaterials 2008, 29, 3393–3401. [Google Scholar] [CrossRef] [PubMed]
- Dhote, V.; Vernerey, F.J. Mathematical model of the role of degradation on matrix development in hydrogel scaffold. Biomech. Modeling Mechanobiol. 2014, 13, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.J.; Madihally, S.V. Cell colonization in degradable 3d porous matrices. Cell Adh. Migr. 2008, 2, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Naili, S.; Oddou, C.; Geiger, D. A method for the determination of mechanical parameters in a porous elastically deformable medium : Applications to biological soft tissues. Int. J. Solids Struct. 1998, 35, 4963–4979. [Google Scholar] [CrossRef]
- Chung, C.-Y.; Mansour, J.M. Using regression models to determine the poroelastic properties of cartilage. J. Biomech. 2013, 46, 1921–1927. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
German, C.L.; Madihally, S.V. Applications of Computational Modelling and Simulation of Porous Medium in Tissue Engineering. Computation 2016, 4, 7. https://doi.org/10.3390/computation4010007
German CL, Madihally SV. Applications of Computational Modelling and Simulation of Porous Medium in Tissue Engineering. Computation. 2016; 4(1):7. https://doi.org/10.3390/computation4010007
Chicago/Turabian StyleGerman, Carrie L., and Sundararajan V. Madihally. 2016. "Applications of Computational Modelling and Simulation of Porous Medium in Tissue Engineering" Computation 4, no. 1: 7. https://doi.org/10.3390/computation4010007
APA StyleGerman, C. L., & Madihally, S. V. (2016). Applications of Computational Modelling and Simulation of Porous Medium in Tissue Engineering. Computation, 4(1), 7. https://doi.org/10.3390/computation4010007