Geometric Derivation of the Stress Tensor of the Homogeneous Electron Gas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Homogeneous Electron Gas in a Uniform Metric Field
3. Time-Dependent Transformation
4. Macroscopic Stress Tensor
5. Tensor of Elasticity
5.1. High-Frequency Limit
5.2. Finite-Frequency Spectra
5.3. Low-Frequency Limit of
6. Exchange-Correlation Viscoelasticity Constants
7. Exchange-Correlation Kernel within RPA
7.1. Exchange-Correlation Kernel
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Runge, E.; Gross, E.K.U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Giuliani, G.F.; Vignale, G. Quantum Theory of the Electron Liquid; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Zangwill, A.; Soven, P. Resonant Photoemission in Barium and Cerium. Phys. Rev. Lett. 1980, 45, 204–207. [Google Scholar] [CrossRef]
- Bauernschmit, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Petersilka, M.; Gossmann, U.J.; Gross, E.K.U. Excitation Energies from Time-Dependent Density-Functional Theory. Phys. Rev. Lett. 1996, 76, 1212–1215. [Google Scholar] [CrossRef] [PubMed]
- Van Gisbergen, S.J.A.; Kootstra, F.; Schipper, P.R.T.; Gritsenko, O.V.; Snijders, G.; Baerends, E.J. Density-functional-theory response-property calculations with accurate exchange-correlation potentials. Phys. Rev. A 1998, 57, 2556–2571. [Google Scholar] [CrossRef]
- Tozer, D.J.; Handy, N.C. On the determination of excitation energies using density functional theory. Phys. Chem. Chem. Phys. 2000, 2, 2117–2121. [Google Scholar] [CrossRef]
- Tozer, D.J.; Amos, R.D.; Handy, N.C.; Roos, B.O.; Serrano-Andres, L. Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol. Phys. 1999, 97, 859–868. [Google Scholar] [CrossRef]
- D’Agosta, R.; Vignale, G. Relaxation in time-dependent current-density-functional theory. Phys. Rev. Lett. 2006, 96. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Vignale, G.; Tokatly, I.V. Time-dependent density functional theory: Derivation of gradient-corrected dynamical exchange-correlational potentials. Phys. Rev. B 2007, 76. [Google Scholar] [CrossRef]
- Ullirich, C.A. Time-dependent density-functional theory beyond the adiabatic approximation: Insights from a two-electron model system. J. Chem. Phys. 2006, 125. [Google Scholar] [CrossRef] [PubMed]
- Vignale, G.; Kohn, W. Current-dependent exchange-correlation potential for dynamical linear response theory. Phys. Rev. Lett. 1996, 77, 2037–2040. [Google Scholar] [CrossRef] [PubMed]
- Vignale, G.; Kohn, W. Electronic Density Functional Theory; Dobson, J.F., Das, M.P., Vignale, G., Eds.; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Tokatly, I.V. Quantum many-body dynamics in a Lagrangian frame: I. Equations of motion and conservation laws. Phys. Rev. B 2005, 71. [Google Scholar] [CrossRef]
- Tokatly, I.V. Quantum many-body dynamics in a Lagrangian frame: II. Geometric formulation of time-dependent density functional theory. Phys. Rev. B 2005, 71. [Google Scholar] [CrossRef]
- Vignale, G.; Ullrich, C.A.; Conti, S. Time-dependent density functional theory beyond the adiabatic local density approximation. Phys. Rev. Lett. 1997, 79, 4878–4881. [Google Scholar] [CrossRef]
- Van Faassen, M.; de Boeij, P.L.; van Leeuwen, R.; Berger, J.A.; Snijders, J.G. Ultranonlocality in time-dependent current-density-functional theory: Application to conjugated polymers. Phys. Rev. Lett. 2002, 88. [Google Scholar] [CrossRef] [PubMed]
- Van Faassen, M.; de Boeij, P.L.; van Leeuwen, R.; Berger, J.A.; Snijders, J.G. Application of time-dependent current-density-functional theory to nonlocal exchange-correlation effects in polymers. J. Chem. Phys. 2003, 118. [Google Scholar] [CrossRef]
- Aulbur, W.G.; Jonsson, L.W.; Wilkins, J.W. Solid State Physics; Ehrenfeich, H., Spaepeu, F., Eds.; Academic Press: New York, NY, USA, 2000. [Google Scholar]
- Tao, J.; Vignale, G. Time-dependent density-functional theory beyond the local-density approximation. Phys. Rev. Lett. 2006, 97. [Google Scholar] [CrossRef] [PubMed]
- Conti, S.; Nifosi, R.; Tosi, M.P. The exchange-correlation potential for current-density functional theory of frequency-dependent linear response. J. Phys. Condens. Matter 1997, 9. [Google Scholar] [CrossRef]
- Nifosi, R.; Conti, S.; Tosi, M.P. Dynamic exchange-correlation potentials for the electron gas in dimensionality D = 3 and D = 2. Phys. Rev. B 1998, 58. [Google Scholar] [CrossRef]
- Conti, S.; Vignale, G. Elasticity of an electron liquid. Phys. Rev. B 1999, 60. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Lifshitz, Fluid Mechanics, 2nd ed.; Pergamon Press: Oxford, UK, 1987. [Google Scholar]
- Tao, J.; Gao, X.; Vignale, G.; Tokatly, I.V. Linear continuum mechanics for quantum many-body systems. Phys. Rev. Lett. 2009, 103. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Tao, J.; Vignale, G.; Tokatly, I.V. Continuum mechanics for quantum many-body systems: Linear response regime. Phys. Rev. B 2010, 81. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45. [Google Scholar] [CrossRef]
- Ortiz, G.; Ballone, P. Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas. Phys. Rev. B 1994, 50. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45. [Google Scholar] [CrossRef]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Hasegawa, M.; Watabe, M.J. Theory of plasmon damping in metals. I. General formulation and application to an electron gas. Phys. Soc. Jpn. 1969, 27, 1393–1414. [Google Scholar] [CrossRef]
- Neilson, D.; Swierkowski, L.; Sj̎lander, A.; Szymanski, J. Dynamical theory for strongly correlated two-dimensional electron systems. Phys. Rev. B 1991, 44. [Google Scholar] [CrossRef]
- Qian, Z.; Vignale, G. Dynamical exchange-correlation potentials for an electron liquid. Phys. Rev. B 2002, 65. [Google Scholar] [CrossRef]
- Perdew, J.P.; Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 1992, 46. [Google Scholar] [CrossRef]
- Ullrich, C.A.; Burke, K.J. Excitation energies from time-dependent density-functional theory beyond the adiabatic approximation. Chem. Phys. 2004, 121. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.A.; de Boeij, P.L.; van Leeuwen, R. Analysis of the viscoelastic coefficients in the Vignale-Kohn functional: The cases of one- and three-dimensional polyacetylene. Phys. Rev. B 2005, 71. [Google Scholar] [CrossRef]
- Tao, J.; Vignale, G. Analytic expression for the diamagnetic susceptibility of a uniform electron gas. Phys. Rev. B 2006, 74. [Google Scholar] [CrossRef]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003, 91. [Google Scholar] [CrossRef] [PubMed]
- Seidl, M.; Perdew, J.P.; Kurth, S. Density functionals for the strong-interaction limit. Phys. Rev. A 2000, 62. [Google Scholar] [CrossRef]
- Tao, J.; Mo, Y. Accurate Semilocal Density Functional for Condensed-Matter Physics and Quantum Chemistry. Phys. Rev. Lett. 2016, 117. [Google Scholar] [CrossRef] [PubMed]
- Tokatly, I.V. Time-dependent deformation functional theory. Phys. Rev. B 2007, 75. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, J.; Vignale, G.; Zhu, J.-X. Geometric Derivation of the Stress Tensor of the Homogeneous Electron Gas. Computation 2017, 5, 28. https://doi.org/10.3390/computation5020028
Tao J, Vignale G, Zhu J-X. Geometric Derivation of the Stress Tensor of the Homogeneous Electron Gas. Computation. 2017; 5(2):28. https://doi.org/10.3390/computation5020028
Chicago/Turabian StyleTao, Jianmin, Giovanni Vignale, and Jian-Xin Zhu. 2017. "Geometric Derivation of the Stress Tensor of the Homogeneous Electron Gas" Computation 5, no. 2: 28. https://doi.org/10.3390/computation5020028
APA StyleTao, J., Vignale, G., & Zhu, J. -X. (2017). Geometric Derivation of the Stress Tensor of the Homogeneous Electron Gas. Computation, 5(2), 28. https://doi.org/10.3390/computation5020028