An Innovative Deep Learning Algorithm for Drowsiness Detection from EEG Signal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Volunteers Recruitment and Acquisition Protocol
2.2. EEG Recordings
2.3. Algorithm Description
2.4. Algorithm Testing and Validation Framework
3. Results and Discussion
3.1. Results of the DCT Block
3.2. Results of the Autoencoder Block
3.3. Results of the Softmax Block
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, C.T.; Chang, C.J.; Lin, B.S.; Hung, S.H.; Chao, C.F.; Wang, I.J. A Real-Time Wireless Brain–Computer Interface System for Drowsiness Detection. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Rundo, F.; Conoci, S.; Fallica, G. A Method of Processing Electrophysiological Signals, Corresponding System, Vehicle and Computer Program Product. IT Patent Application Nr. 102017000120714, 24 October 2017. [Google Scholar]
- Santamaria, J.; Chiappa, K.H. The EEG of drowsiness in normal adults. J. Clin. Neurophysiol. 1987, 4, 327–382. [Google Scholar] [CrossRef] [PubMed]
- Garcés Correa, A.; Orosco, L.; Laciar, E. Automatic detection of drowsiness in EEG records based on multimodal analysis. Med. Eng. Phys. 2014, 36, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Fisch, B. Fish and Spehlmann’s EEG Primer: Basic Principles of Digital and Analog EEG, 3rd ed.; Elsevier Science BV: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Akin, M.; Kurt, M.; Sezgin, N.; Bayram, M. Estimating vigilance level by using EEG and EMG signals. Neural Comput. Appl. 2008, 17, 227–236. [Google Scholar] [CrossRef]
- Kasakawa, S.; Yamanishi, T.; Takahashi, T.; Ueno, K.; Kikuchi, M.; Nishimura, H. Approaches of Phase Lag Index to EEG Signals in Alzheimer’s Disease from Complex Network Analysis. In Innovation in Medicine and Healthcare 2015; Springer International Publishing: Cham, Switzerland, 2016; pp. 459–468. [Google Scholar]
- Chai, R.; Ling, S.H.; San, P.P.; Naik, G.R.; Nguyen, T.N.; Tran, Y.; Craig, A.; Nguyen, H.T. Improving EEG-Based Driver Fatigue Classification Using Sparse-Deep Belief Networks. Front. Neurosci. 2017, 11, 103. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, Y.; Hu, Z.; Du, X.; Wu, W.; Xu, C.; Wang, X.; Li, S. Complexity Analysis of Electroencephalogram Dynamics in Patients with Parkinson’s Disease. Park. Dis. 2017, 2017, 8701061. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, A.; Koprinska, I.; Naik, G. Dynamically Identifying Relevant EEG Channels by Utilizing Their Classification Behaviour. Expert Syst. Appl. 2017, 83, 273–282. [Google Scholar] [CrossRef]
- Chai, R.; Naik, G.R.; Nguyen, T.N.; Ling, S.H.; Tran, Y.; Craig, A.; Nguyen, H.T. Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J. Biomed. Health Inform. 2017, 21, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Li, H.; Yu, D. The relationship between ERP components and EEG spatial complexity in a visual Go/Nogo task. J. Neurophysiol. 2017, 117, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, S.; Jadhav, P.; Adapa, B.; Acharyya, A.; Naik, G.R. Online and automated reliable system design to remove blink and muscle artefact in EEG. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6784–6787. [Google Scholar]
- Kwon, Y.; Kim, K.I.; Tompkin, J.; Kim, J.H.; Theobalt, C. Efficient learning of image super-resolution and compression artifact removal with semi-local Gaussian processes. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1792–1805. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.N.; Shanamugan, D.; Chourasia, A.; Ghole, A.R.; Acharyya, A.A.; Naik, G. Automated detection and correction of eye blink and muscular artefacts in EEG signal for analysis of Autism Spectrum Disorder. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 1881–1884. [Google Scholar]
- Sahayadhas, A.; Sundaraj, K.; Murugappan, M. Detecting driver drowsiness based on sensors: A review. Sensors 2012, 12, 16937–16953. [Google Scholar] [CrossRef] [PubMed]
- Vinciguerra, V.; Ambra, E.; Maddiona, L.; Oliveri, S.; Romeo, M.F.; Mazzillo, M.; Rundo, F.; Fallica, G. Progresses towards a processing pipeline in photoplethysmogram (PPG) based on SiPMs. In Proceedings of the 2017 European Conference on Circuit Theory and Design (ECCTD), Catania, Italy, 4–6 September 2017; pp. 1–5. [Google Scholar]
- Conoci, S.; Rundo, F.; Petralta, S.; Battiato, S. Advanced skin lesion discrimination pipeline for early melanoma cancer diagnosis towards PoC devices. In Proceedings of the European Conference on Circuit Theory and Design, ECCTD, Catania, Italy, 4–6 September 2017. [Google Scholar]
- Rundo, F.; Ortis, A.; Battiato, S.; Conoci, S. Advanced Bio-Inspired System for Noninvasive Cuff-Less Blood Pressure Estimation from Physiological Signal Analysis. Computation 2018, 6, 46. [Google Scholar] [CrossRef]
- Rundo, F.; Conoci, S.; Banna, G.L.; Stanco, F.; Battiato, S. Bio-Inspired Feed-Forward System for Skin Lesion Analysis, Screening and Follow-Up. In Image Analysis and Processing—ICIAP 2017; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10485. [Google Scholar]
- Rundo, F.; Conoci, S.; Banna, G.L.; Ortis, A.; Stanco, F.; Battiato, S. Evaluation of Levenberg–Marquardt neural networks and stacked autoencoders clustering for skin lesion analysis, screening and follow-up. IET Comput. Vis. 2018, 12, 957–962. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. The Handbook of Brain Theory and Neural Networks; Arbib, M.A., Ed.; MIT Press: Cambridge, MA, USA, 1998; pp. 1–5. [Google Scholar]
- Rundo, F.; Conoci, S.; Ortis, A.; Battiato, S. An Advanced Bio-Inspired PhotoPlethysmoGraphy (PPG) and ECG Pattern Recognition System for Medical Assessment. Sensors 2018, 18, 405. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Laguna, P.; Bartra, A.; Bailón, R. Detection of driver’s drowsiness by means of HRV analysis. Comput. Cardiol. 2011, 38, 89–92. [Google Scholar]
- Rundo, F.; Fallica, P.G.; Conoci, S.; Parenti, R.; Perciavalle, V. A Method of Processing Electrophysiological Signals, Corresponding System, Vehicle and Computer Program Product. IT Patent N. 102018000005512, 18 May 2018. [Google Scholar]
- Lal, S.K.; Craig, A. A critical review of the psychophysiology of driver fatigue. Biol. Psychol. 2001, 55, 173–194. [Google Scholar] [CrossRef]
- De Naurois, C.J.; Bourdin, C.; Stratulat, A.; Diaz, E.; Vercher, J. Detection and prediction of driver drowsiness using artificial neural network models. Accid. Anal. Prev. 2017. [Google Scholar] [CrossRef] [PubMed]
- Balandong, R.P.; Ahmad, R.F.; Saad, M.N.M.; Malik, A.S. A Review on EEG-Based Automatic Sleepiness Detection Systems for Driver. IEEE Access 2018, 6, 22908–22919. [Google Scholar] [CrossRef]
- Hajinoroozi, M.; Mao, Z.; Huang, Y. Prediction of driver’s drowsy and alert states from EEG signals with deep learning. In Proceedings of the 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancun, Mexico, 13–16 December 2015; pp. 493–496. [Google Scholar] [CrossRef]
- Vesselenyi, T.; Moca, S.; Rus, A.; Mitran, T.; Tătaru, B. Driver drowsiness detection using ANN image processing. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012097. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.; Zhang, Z. Deep Convolution Neural Network and Autoencoders-Based Unsupervised Feature Learning of EEG Signals. IEEE Access 2018, 6, 25399–25410. [Google Scholar] [CrossRef]
- Towle, V.L.; Bolaños, J.; Suarez, D.; Tan, K.; Grzeszczuk, R.; Levin, D.N.; Cakmur, R.; Frank, S.A.; Spire, J.P. The spatial location of EEG electrodes: Locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr. Clin. Neurophysiol. 1993, 86, 1–6. [Google Scholar] [CrossRef]
- Narasimha, M.; Peterson, A. On the Computation of the Discrete Cosine Transform. IEEE Trans. Commun. 1978, 26, 934–936. [Google Scholar] [CrossRef]
- Moller, M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Netw. 1993, 6, 525–553. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; Volume 1. [Google Scholar]
Drowsiness Detection Methodologies [28] | Accuracy |
---|---|
SVM + Bayes | 90.6% |
SVM-RBF | 93.1% +/− 5.2% |
K-SVD | 93.87% |
SVM | 98% (average accuracy) |
ANN | 99.5% |
LDA | 97% |
SVM(NR) | 92% |
Proposed | 100% |
Drowsiness Detection Methodologies | Training Performance (Min MSE) | Training Performance (Number of Epochs) | Type of Signals |
---|---|---|---|
Method proposed in [30] | 10−6 | 430 | Imaging + Signal |
Proposed | 10−6 | 280 | Signal |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rundo, F.; Rinella, S.; Massimino, S.; Coco, M.; Fallica, G.; Parenti, R.; Conoci, S.; Perciavalle, V. An Innovative Deep Learning Algorithm for Drowsiness Detection from EEG Signal. Computation 2019, 7, 13. https://doi.org/10.3390/computation7010013
Rundo F, Rinella S, Massimino S, Coco M, Fallica G, Parenti R, Conoci S, Perciavalle V. An Innovative Deep Learning Algorithm for Drowsiness Detection from EEG Signal. Computation. 2019; 7(1):13. https://doi.org/10.3390/computation7010013
Chicago/Turabian StyleRundo, Francesco, Sergio Rinella, Simona Massimino, Marinella Coco, Giorgio Fallica, Rosalba Parenti, Sabrina Conoci, and Vincenzo Perciavalle. 2019. "An Innovative Deep Learning Algorithm for Drowsiness Detection from EEG Signal" Computation 7, no. 1: 13. https://doi.org/10.3390/computation7010013
APA StyleRundo, F., Rinella, S., Massimino, S., Coco, M., Fallica, G., Parenti, R., Conoci, S., & Perciavalle, V. (2019). An Innovative Deep Learning Algorithm for Drowsiness Detection from EEG Signal. Computation, 7(1), 13. https://doi.org/10.3390/computation7010013