Coordinate Scaling in Time-Independent Excited-State Density Functional Theory for Coulomb Systems
Abstract
:1. Introduction
2. Excited-State DFT for Coulomb Systems
3. Coordinate Scaling
4. Discussion
Funding
Conflicts of Interest
References
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. J. Arch. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. J. Arch. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Theophilou, A.K. The energy density functional formalism for excited states. J. Phys. C Solid State Phys. 1979, 12, 5419. [Google Scholar] [CrossRef]
- Gross, E.K.U.; Oliveira, L.N.; Kohn, W. Density-functional theory for ensembles of fractionally occupied states. I. Basic formalism. Phys. Rev. A 1988, 37, 2809. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Nagy, Á. Variational Density-Functional Theory for an Individual Excited State. Phys. Rev. Lett. 1999, 83, 4361. [Google Scholar] [CrossRef]
- Nagy, Á.; Levy, M. Variational density-functional theory for degenerate excited states. Phys. Rev. A 2001, 63, 052502. [Google Scholar] [CrossRef]
- Nagy, Á. Optimized potential method for ensembles of excited states. Int. J. Quantum Chem. 1998, 69, 247–254. [Google Scholar] [CrossRef]
- Nagy, Á. Excited states in density functional theory. Int. J. Quantum Chem. 1998, 70, 681. [Google Scholar] [CrossRef]
- Ayers, P.W.; Levy, M.; Nagy, Á. Time-independent density-functional theory for excited states of Coulomb systems. Phys. Rev. A 2012, 85, 042518. [Google Scholar] [CrossRef]
- Ayers, P.W.; Levy, M.; Nagy, Á. Kohn–Sham theory for excited states of Coulomb systems. J. Chem. Phys. 2015, 143, 191101. [Google Scholar] [CrossRef]
- Ayers, P.W.; Levy, M.; Nagy, Á. Time-independent density functional theory for degenerate excited states of Coulomb systems. Theor. Chim. Account. 2018, 137, 152. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Parr, R.G. Density-determined orthonormal orbital approach to atomic energy functionals. J. Chem. Phys. 1985, 82, 3307. [Google Scholar] [CrossRef]
- Levy, M.; Perdew, J.P. Hellmann-Feynman, virial, and scaling requisites for the exact universal density functionals. Shape of the correlation potential and diamagnetic susceptibility for atoms. Phys. Rev. A 1985, 32, 2010. [Google Scholar] [CrossRef] [PubMed]
- Ou-Yang, H.; Levy, M. Theorem for exact local exchange potential. Phys. Rev. Lett. 1990, 65, 1036. [Google Scholar] [CrossRef]
- Levy, M. Density-functional exchange correlation through coordinate scaling in adiabatic connection and correlation hole. Phys. Rev. A 1991, 43, 4637. [Google Scholar] [CrossRef]
- Görling, A.; Levy, M.; Perdew, J.P. Expectation values in density-functional theory, and kinetic contribution to the exchange-correlation energy. Phys. Rev. B 1993, 47, 1167. [Google Scholar] [CrossRef]
- Levy, M.; Perdew, J.P. Density functionals for exchange and correlation energies: Exact conditions and comparison of approximations. Int. J. Quantum Chem. 1994, 49, 539–548. [Google Scholar] [CrossRef]
- Görling, A.; Levy, M. Correlation-energy functional and its high-density limit obtained from a coupling-constant perturbation expansion. Phys. Rev. B 1993, 47, 13105. [Google Scholar] [CrossRef]
- Levy, M.; Perdew, J.P. Tight bound and convexity constraint on the exchange-correlation-energy functional in the low-density limit, and other formal tests of generalized-gradient approximations. Phys. Rev. B 1993, 48, 11638. [Google Scholar] [CrossRef]
- Görling, A.; Levy, M. Exact Kohn–Sham scheme based on perturbation theory. Phys. Rev. A 1994, 50, 196. [Google Scholar] [CrossRef]
- Levy, M.; Görling, A. Bounds for the exchange and correlation potentials. Phys. Rev. A 1995, 51, 2851. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Görling, A. New exact relations for improving the exchange and correlation potentials. Int. J. Quantum Chem. 1995, 56, 385–388. [Google Scholar] [CrossRef]
- Levy, M.; Görling, A. Density-functional exchange identity from coordinate scaling. Phys. Rev. A 1996, 53, 3140. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.B.; Parr, R.G. Expansions of the correlation-energy density functional Ec[ρ] and its kinetic-energy component Tc[ρ] in terms of homogeneous functionals. Phys. Rev. A 1996, 53, 2211. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.B.; Nagy, Á.; Parr, R.G. Expansion of the density-functional energy components Ec and Tc in terms of moments of the electron density. Phys. Rev. A 1999, 59, 1131. [Google Scholar] [CrossRef]
- Nagy, Á.; Liu, S.B.; Parr, R.G. Density-functional formulas for atomic electronic energy components in terms of moments of the electron density. Phys. Rev. A 1999, 59, 3349. [Google Scholar] [CrossRef]
- Sun, J.W.; Ruzsinsky, A.; Perdew, J.P. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett. 2015, 115, 036402. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, Á. Coordinate Scaling in Time-Independent Excited-State Density Functional Theory for Coulomb Systems. Computation 2019, 7, 59. https://doi.org/10.3390/computation7040059
Nagy Á. Coordinate Scaling in Time-Independent Excited-State Density Functional Theory for Coulomb Systems. Computation. 2019; 7(4):59. https://doi.org/10.3390/computation7040059
Chicago/Turabian StyleNagy, Ágnes. 2019. "Coordinate Scaling in Time-Independent Excited-State Density Functional Theory for Coulomb Systems" Computation 7, no. 4: 59. https://doi.org/10.3390/computation7040059
APA StyleNagy, Á. (2019). Coordinate Scaling in Time-Independent Excited-State Density Functional Theory for Coulomb Systems. Computation, 7(4), 59. https://doi.org/10.3390/computation7040059