A DFT Study on Structure and Electronic Properties of BN Nanostructures Adsorbed with Dopamine
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characteristics of DPM
3.2. DPM Adsorption Phenomena upon the BN Nano-Cages
3.3. Adsorption of the Second DPM upon B12N12
3.4. DPM Adsorption Phenomena upon the BN Nanotubes
3.5. Adsorption of the DPM on the Al- and Ga-Doped B12N12
3.6. The Solvent Effect on the Adsorption Phenomenon
4. Conclusions
- The DPM shows different binding characteristics on various BN nanostructures.
- The adsorption of DPM on BN nano-cages is stronger than other BN nanotubes.
- The most stable adsorption configuration relates to a single DPM–B12N12 system with adsorption energy of −1.41 eV.
- The doped BN nano-cages with Al and Ga atoms exhibit dramatic changes in adsorption and electronic properties with respect to their pristine counterparts.
- The adsorption of DPM on the Ga-doped B12N12 systems is stronger than that of the other studied systems.
- The adsorption of DPM on the studied systems in water phase is stronger than the gas phase.
Author Contributions
Funding
Conflicts of Interest
References
- Chen, R.J.; Bangsaruntip, S.; Drouvalakis, K.A.; Kam, N.W.S.; Shim, M.; Li, Y.M.; Kim, W.; Utz, P.J.; Dai, H.J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.J.; Zhang, Y.G.; Wang, D.W.; Dai, H.J. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. J. Am. Chem. Soc. 2001, 123, 3838. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Liu, Y.C.; Wang, Q.; Shen, J.W.; Wu, T.; Guan, W.J. On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials 2009, 30, 2807. [Google Scholar] [CrossRef] [PubMed]
- Pantarotto, D.; Partidos, C.D.; Graff, R.; Hoebeke, J.; Briand, J.P.; Prato, M.; Bianco, A.J. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. Am. Chem. Soc 2003, 125, 6160. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S.; Joselevich, E.; Woolley, A.T.; Cheung, C.L.; Lieber, C.M. Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology. Nature 1998, 394, 52. [Google Scholar] [CrossRef]
- Cui, Y.; Wei, Q.Q.; Park, H.K.; Lieber, C.M. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science 2001, 293, 1289. [Google Scholar] [CrossRef]
- Benyamini, H.; Shulman-Peleg, A.; Wolfson, H.J.; Belgorodsky, B.; Fadeev, L.; Gozin, M. Interaction of C60-Fullerene and Carboxyfullerene with Proteins: Docking and Binding Site Alignment. Bioconjugate Chem 2006, 17, 378. [Google Scholar] [CrossRef]
- Hong, R.; Fischer, N.O.; Verma, A.; Goodman, C.M.; Emrick, T.; Rotello, V.M. Control of Protein Structure and Function through Surface Recognition by Tailored Nanoparticle Scaffolds. J. Am. Chem. Soc 2004, 126, 739. [Google Scholar] [CrossRef]
- You, C.C.; Agasti, S.S.; De, M.; Knapp, M.J.; Rotello, V.M. Modulation of the Catalytic Behavior of α-Chymotrypsin at Monolayer-Protected Nanoparticle Surfaces. J. Am. Chem. Soc 2006, 128, 14612. [Google Scholar] [CrossRef]
- Kia, M.; Golzar, M.; Mahjoub, K.; Soltani, A. A first-principles study of functionalized clusters and carbon nanotubes or fullerenes with 5-Aminolevulinic acid as vehicles for drug delivery. Superlattices Microstruct 2013, 62, 251–259. [Google Scholar] [CrossRef]
- Gallo, M.; Favila, A.; Glossman-Mitnik, D. DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem. Phys. Lett 2007, 447, 105–109. [Google Scholar] [CrossRef]
- Shukla, M.K.; Dubey, M.; Zakar, E.; Namburu, R.; Leszczynski, J. Density functional theory investigation of interaction of zigzag (7,0) single-walled carbon nanotube with Watson–Crick DNA base pairs. Chem. Phys. Lett 2010, 496, 128–132. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, R.; Zhang, D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem. Phys. Lett 2008, 467, 131–135. [Google Scholar] [CrossRef]
- Choi, H.; Park, Y.C.; Kim, Y.-H.; Lee, Y.S. Ambient Carbon Dioxide Capture by Boron-Rich Boron Nitride Nanotube. J. Am. Chem. Soc 2011, 133, 2084–2087. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.-Y.; Yang, B.-S.; Wu, H.-S. Ab initio investigation of hydrogenation of (BN)16: A comparison with that of (BN)12. J. Mol. Struct. THEOCHEM 2010, 941, 144–149. [Google Scholar] [CrossRef]
- Mirzaei, M.; Yousefi, M. Boron nitride nanotubes with quadrangular cross sections: Density functional studies. Superlattices Microstruct 2012, 52, 648–652. [Google Scholar] [CrossRef]
- Soltani, A.; Ahmadian, N.; Amirazami, A.; Masoodi, A.; Lemeski, E.T.; Moradi, A.V. Theoretical investigation of OCN− adsorption onto boron nitride nanotubes. Appl. Surf. Sci 2012, 261, 262–267. [Google Scholar] [CrossRef]
- Soltani, A.; Ahmadian, N.; Kanani, Y.; Dehno khalaji, A.; Mighani, H. Ab initio investigation of the SCN− chemisorption of single-walled boron nitride nanotubes. Appl. Surf. Sci 2012, 258, 9536–9543. [Google Scholar] [CrossRef]
- Beheshtian, J.; Peyghan, A.A.; Bagheri, Z. Detection of phosgene by Sc-doped BN nanotubes: A DFT study. Sens. Actuators B Chem 2012, 171–172, 846–852. [Google Scholar] [CrossRef]
- Ribeiroa, F.A.D.; Tarley, C.R.T.; Borges, K.B.; Pereira, A.C. Development of a square wave voltammetric method for dopamine determination using a biosensor based on multiwall carbon nanotubes paste and crude extract of Cucurbita pepo L. Sens. Actuators B Chem 2013, 185, 743–754. [Google Scholar] [CrossRef]
- Njagi, J.; Chernov, M.M.; Leiter, J.C.; Silvana, A. Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor. Anal. Chem 2010, 82, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Fei, J.; Hu, S. Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem 2003, 318, 100–106. [Google Scholar] [CrossRef]
- Saikia, N.; Pati, S.K.; Deka, R.C. First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule. Appl. Nanosci 2012, 2, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Juárez, A.R.; Anota, E.C.; Cocoletzi, H.H.; Riveros, A.F. Adsorption of chitosan on BN nanotubes: A DFT investigation. Appl. Surf. Sci 2013, 268, 259–264. [Google Scholar]
- Mukhopadhyay, S.; Scheicher, R.H.; Pandey, R.; Karna, S.P. Sensitivity of Boron Nitride Nanotubes toward Biomolecules of Different Polarities. J. Phys. Chem. Lett 2011, 2, 2442–2447. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Gowtham, S.; Scheicher, R.H.; Pandey, R.; Karna, S.P. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnology 2010, 21, 165703. [Google Scholar] [CrossRef] [Green Version]
- Baei, M.T.; Taghartapeh, M.R.; Lemeski, E.T.; Soltani, A. A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages. Physica B 2014, 444, 6–13. [Google Scholar] [CrossRef]
- Soltani, A.; Baei, M.T.; Lemeski, E.T.; Shahini, M. Sensitivity of BN nano-cages to caffeine and nicotine molecules. Superlattices Microstruct 2014, 76, 315–325. [Google Scholar] [CrossRef]
- Baei, M.T.; Taghartapeh, M.R.; Lemeski, E.T.; Soltani, A. Computational study of OCN− chemisorption over AlN nanostructures. Superlattices Microstruct 2014, 72, 370–382. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.02-SMP; Gaussian: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry, III. The role of exact exchange. J. Chem. Phys 1993, 98, 5648–5654. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anota, E.C.; Cocoletzi, G.H. GGA-based analysis of the metformin adsorption on BN nanotubes. Physica E 2014, 56, 134–140. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpaly, L.; Liu, S.J. Electrophilicity Index. Am. Chem. Soc 1999, 121, 1922. [Google Scholar] [CrossRef]
- Parr, R.G.; Pearson, R.G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc 1983, 105, 7512. [Google Scholar] [CrossRef]
- Mohammad-Shiri, H.; Ghaemi, M.; Riahi, S.; Akbari-Sehat, A. Computational and electrochemical studies on the redox reaction of dopamine in aqueous solution. Int. J. Electrochem. Sci 2011, 6, 317–336. [Google Scholar]
- Ge, B.; Tan, Y.; Xie, Q.; Ma, M.; Yao, S. Preparation of chitosan–dopamine-multiwalled carbon nanotubes nanocomposite for electrocatalytic oxidation and sensitive electroanalysis of NADH. Sens. Actuators B 2009, 137, 547–554. [Google Scholar] [CrossRef]
- Xuan, Y.; Jiang, G.; Li, Y.; Wang, J.; Geng, H. Inhibiting effect of dopamine adsorption and polymerization on hydrated swelling of montmorillonite. Colloids Surf. A Physicochem. Eng. Asp 2013, 422, 50–60. [Google Scholar] [CrossRef]
- Foresman, J.B.; Frisch, A.E. Exploring Chemistry with Electronic Structure Methods, 2nd ed.; Gaussian Inc.: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Lewars, E. Computational Chemistry - Introduction to the Theory and Applications of Molecular and Quantum Mechanics; Kluwer Academic: Norwell, MA, USA, 2003. [Google Scholar]
System | B12N12 | DPM/B12N12 | B16N16 | DPM/ B16N16 | Two DPM/B12N12 |
---|---|---|---|---|---|
RB-N/Å | 1.486 | 1.569 | 1.473 | 1.557 | 1.567 |
RB-N-B/¼ | 80.5 | 84.0 | 78.5 | 82.4 | 83.78 |
RN-B-N/¼ | 98.2 | 91.7 | 99.3 | 92.9 | 92.0 |
D/Å | - | 1.635 | - | 1.645 | 1.643 |
Ead/eV | - | −1.41 | - | −1.27 | −1.30 |
QB/e | 0.440 | 0.619 | 0.437 | 0.665 | 0.630 |
QN/e | −0.440 | −0.512 | −0.437 | −0.514 | −0.511 |
ΔN/e | - | −0.11 | - | −0.15 | −0.12 |
EHOMO/eV | −7.71 | −5.98 | −7.38 | −5.98 | −5.73 |
ELUMO/eV | −0.87 | −0.27 | −1.01 | −0.29 | −0.01 |
Eg/eV | 6.84 | 5.71 | 6.37 | 5.69 | 5.72 |
∆Eg (%) | - | −19.8 | - | −10.7 | −16.37 |
EFL/eV | −4.29 | −3.12 | −4.20 | −3.13 | −2.87 |
μ/eV | −4.29 | −3.13 | −4.19 | −3.13 | −2.87 |
η/eV | 3.42 | 2.86 | 3.19 | 2.84 | 2.86 |
ω/eV | 2.69 | 1.71 | 2.76 | 1.73 | 1.44 |
S/eV | 0.15 | 0.18 | 0.16 | 0.18 | 0.17 |
DM/Debye | 0.0 | 9.69 | 0.0 | 9.78 | 7.58 |
System | (6,0) BNNT | (5,5) BNNT | (8,0) BNNT | DPM/(6,0) BNNT | DPM/(5,5) BNNT | DPM/(8,0) BNNT |
---|---|---|---|---|---|---|
RB-N/Å | 1.488 | 1.450 | 1.449 | 1.511 | 1.463 | 1.510 |
RB-N-B/¼ | 117.77 | 115.24 | 118.79 | 117.06 | 118.58 | 120.62 |
RN-B-N/¼ | 119.85 | 119.62 | 119.97 | 114.26 | 119.23 | 114.54 |
D/Å | - | - | - | 1.682 | 2.890 | 1.714 |
Ead/eV | - | - | - | −0.77 | −0.12 | −0.51 |
QB/e | 0.490 | 0.467 | 0.476 | 0.793 | 0.601 | 0.772 |
QN/e | −0.490 | −0.467 | −0.476 | −0.564 | −0.459 | −0.553 |
ΔN/e | - | - | - | −0.23 | −0.14 | −0.22 |
EHOMO/eV | −6.62 | −6.40 | −6.47 | −5.94 | −5.51 | −5.94 |
ELUMO/eV | −1.92 | −0.09 | −1.08 | −1.62 | 0.0 | −0.85 |
Eg/eV | 4.70 | 6.31 | 5.39 | 4.32 | 5.51 | 5.09 |
∆Eg (%) | - | - | - | −8.08 | −12.68 | −5.56 |
EFL/eV | −4.27 | −3.25 | −3.78 | −3.78 | −2.76 | −3.40 |
μ/eV | −4.27 | −3.25 | −3.78 | −3.78 | −2.76 | −3.40 |
η/eV | 2.35 | 3.20 | 2.70 | 2.16 | 2.76 | 2.54 |
ω/eV | 3.88 | 1.67 | 2.64 | 3.31 | 1.38 | 2.26 |
S/eV | 0.21 | 0.16 | 0.19 | 0.23 | 0.18 | 0.20 |
DM/Debye | 7.96 | 0.00 | 11.87 | 10.06 | 3.98 | 12.89 |
System | AlB11N12 | DPM/AlB11N12 | GaB11N12 | DPM/GaB11N12 |
---|---|---|---|---|
RAl-N/Å | 1.835 | 1.864 | - | - |
RGa-N/Å | - | - | 1.905 | 1.923 |
RAl-N-B/¼ | 83.6 | 84.9 | - | - |
RN-Al-N/¼ | 83.2 | 81.1 | - | - |
RGa-N-B/¼ | - | - | 84.9 | 85.9 |
RN-Ga-N/¼ | - | - | 79.8 | 78.4 |
D/Å | - | 1.998 | - | 2.05 |
Ead/eV | - | –2.29 | - | –2.36 |
QAl/e | 0.613 | 0.538 | - | - |
QGa/e | - | - | 0.497 | 0.417 |
QN/e | −0.548 | −0.575 | −0.613 | −0.592 |
ΔN/e | - | −0.08 | - | −0.08 |
EHOMO/eV | –7.31 | –6.14 | –7.34 | –6.10 |
ELUMO/eV | –3.05 | −0.47 | –3.58 | −0.52 |
Eg/eV | 4.26 | 5.67 | 3.76 | 5.58 |
∆Eg (%) | - | 33.1 | - | 48.4 |
EFL/eV | –5.18 | –3.30 | –5.46 | –3.31 |
μ/eV | –5.18 | –3.30 | –5.46 | –3.31 |
η/eV | 2.13 | 2.83 | 1.88 | 2.79 |
ω/eV | 6.30 | 1.92 | 7.93 | 1.96 |
S/eV | 0.23 | 0.18 | 0.26 | 0.18 |
DM/Debye | 3.24 | 12.49 | 2.76 | 12.23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soltani, A.R.; Baei, M.T. A DFT Study on Structure and Electronic Properties of BN Nanostructures Adsorbed with Dopamine. Computation 2019, 7, 61. https://doi.org/10.3390/computation7040061
Soltani AR, Baei MT. A DFT Study on Structure and Electronic Properties of BN Nanostructures Adsorbed with Dopamine. Computation. 2019; 7(4):61. https://doi.org/10.3390/computation7040061
Chicago/Turabian StyleSoltani, Ali Reza, and Mohammad T. Baei. 2019. "A DFT Study on Structure and Electronic Properties of BN Nanostructures Adsorbed with Dopamine" Computation 7, no. 4: 61. https://doi.org/10.3390/computation7040061
APA StyleSoltani, A. R., & Baei, M. T. (2019). A DFT Study on Structure and Electronic Properties of BN Nanostructures Adsorbed with Dopamine. Computation, 7(4), 61. https://doi.org/10.3390/computation7040061