Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle †
Abstract
:1. Introduction
2. Coulombic Excited State Theory Using Nodal Variation Principle
3. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. J. Arch. 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. J. Arch. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Theophilou, A.K. The energy density functional formalism for excited states. J. Phys. C Solid State Phys. 1979, 12, 5419–5430. [Google Scholar] [CrossRef]
- Gross, E.K.U.; Oliveira, L.N.; Kohn, W. Rayleigh-Ritz variational principle for ensembles of fractionally occupied states. Phys. Rev. A 1988, 37, 2805–2808. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.K.U.; Oliveira, L.N.; Kohn, W. Density-functional theory for ensembles of fractionally occupied states. I. Basic formalism. Phys. Rev. A 1988, 37, 2809–2820. [Google Scholar] [CrossRef]
- Oliveira, L.N.; Gross, E.K.U.; Kohn, W. Density-functional theory for ensembles of fractionally occupied states. II. Application to the He atom. Phys. Rev. A 1988, 37, 2821–2833. [Google Scholar] [CrossRef]
- Nagy, Á. Density Functional Theory of Highly Excited States of Coulomb Systems. Computation 2021, 9, 73. [Google Scholar] [CrossRef]
- Nagy, Á. Excited states in density functional theory. Int. J. Quantum Chem. 1998, 70, 681–691. [Google Scholar] [CrossRef]
- Nagy, Á. Electron Correlations and Materials Properties; Gonis, A., Kioussis, N., Ciftan, M., Eds.; Kluwer: New York, NY, USA, 1999; pp. 451–462. [Google Scholar]
- Nagy, Á. Theories for excited states. Adv. Quant. Chem. 2003, 42, 363–381. [Google Scholar] [CrossRef]
- Levy, M.; Nagy, Á. Variational Density-Functional Theory for an Individual Excited State. Phys. Rev. Lett. 1999, 83, 4361–4364. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á.; Levy, M. Variational density-functional theory for degenerate excited states. Phys. Rev. A 2001, 63, 052502. [Google Scholar] [CrossRef]
- Görling, A. Density-functional theory beyond the Hohenberg-Kohn theorem. Phys. Rev. A 1999, 59, 3359–3374. [Google Scholar] [CrossRef]
- Görling, A. Proper Treatment of Symmetries and Excited States in a Computationally Tractable Kohn-Sham Method. Phys. Rev. Lett. 2000, 85, 4229–4232. [Google Scholar] [CrossRef]
- Sahni, V.; Massa, L.; Singh, R.; Slamet, M. Quantal Density Functional Theory of Excited States. Phys. Rev. Lett. 2001, 87, 113002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, K.D. An accurate local exchange potential for atomic one- and two-electron excited states. Chem. Phys. Lett. 1992, 188, 510–512. [Google Scholar] [CrossRef]
- Singh, R.; Deb, B.M. Excited-state density functional calculations on the helium isoelectronic sequence. Proc. Indian Acad. Sci. Chem. Sci. 1994, 106, 1321–1328. [Google Scholar]
- Singh, R.; Deb, B.M. Density functional calculation of complex atomic spectra. J. Mol. Struct. Theochem 1996, 361, 33–39. [Google Scholar] [CrossRef]
- Singh, R.; Deb, B.M. Density functional calculation for doubly excited autoionizing states of helium atom. J. Chem. Phys. 1998, 104, 5892–5897. [Google Scholar] [CrossRef]
- Roy, A.K.; Deb, B.M. Atomic inner-shell transitions: A density functional approach. Phys. Lett. A 1997, 234, 465–471. [Google Scholar] [CrossRef]
- Roy, A.K.; Deb, B.M. Density functional calculations on neon satellites. Chem. Phys. Lett. 1998, 292, 461–466. [Google Scholar] [CrossRef]
- Roy, A.K.; Singh, R.; Deb, B.M. Density-functional calculations for doubly excited states of He, and Li+, Be2+ and Be3+ (1,3Se, 3P0, 1,3De, 1,3P0,1Ge. J. Phys. B 1997, 30, 4763–4782. [Google Scholar] [CrossRef]
- Roy, A.K.; Singh, R.; Deb, B.M. Density functional calculations on triply excited states of lithium isoelectronic sequence. Int. J. Quaant. Chem. 1997, 65, 317–332. [Google Scholar] [CrossRef]
- Singh, R.; Roy, A.K.; Deb, B.M. Density functional calculations on low-lying singly excited states of open-shell atoms. Chem. Phys. Lett. 1998, 296, 530–536. [Google Scholar] [CrossRef]
- Slamet, M.; Sahni, V. Quantal density functional theory of excited states: Application to an exactly solvable model. Int. J. Quant. Chem. 2001, 85, 436–448. [Google Scholar] [CrossRef]
- Sahni, V.; Pan, X.Y. Quantal Density Functional Theory of Degenerate States. Phys. Rev. Lett. 2003, 90, 123001. [Google Scholar] [CrossRef] [Green Version]
- Slamet, M.; Singh, R.; Massa, L.; Sahni, V. Quantal density-functional theory of excited states: The state arbitrariness of the model noninteracting system. Phys. Rev. A 2003, 68, 042504. [Google Scholar] [CrossRef] [Green Version]
- Sahni, V.; Slamet, M.; Pan, X.Y. Local effective potential theory: Nonuniqueness of potential and wave function. J. Chem. Phys. 2007, 126, 204106. [Google Scholar] [CrossRef]
- Li, Y.Q.; Pan, X.Y.; Li, B.; Sahni, V. Demonstration of the Gunnarsson-Lundqvist theorem and the multiplicity of potentials for excited states. Phys. Rev. A 2012, 85, 032517. [Google Scholar] [CrossRef] [Green Version]
- Ayers, P.W.; Levy, M.; Nagy, Á. Time-independent density-functional theory for excited states of Coulomb systems. Phys. Rev. A 2012, 85, 042518. [Google Scholar] [CrossRef] [Green Version]
- Ayers, P.W.; Levy, M.; Nagy, Á. Kohn-Sham theory for excited states of Coulomb systems. J. Chem. Phys. 2015, 143, 191101. [Google Scholar] [CrossRef]
- Ayers, P.W.; Levy, M.; Nagy, Á. Time-independent density functional theory for degenerate excited states of Coulomb systems. Theor. Chim. Account. 2018, 137, 152. [Google Scholar] [CrossRef]
- Zahariev, F.; Gordon, M.S.; Levy, M. Nodal variational principle for excited states. Phys. Rev. A 2018, 98, 012144. [Google Scholar] [CrossRef] [Green Version]
- Kato, T. On the eigenfunctions of many particle systems in quantum mechanics. Commun. Pure Appl. Math. 1957, 10, 151–177. [Google Scholar] [CrossRef]
- Steiner, E. Charge Densities in Atoms. J. Chem. Phys. 1963, 39, 2365–2366. [Google Scholar] [CrossRef]
- March, N.H. Self-Consistent Fields in Atoms; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Nagy, Á.; Sen, K.D. Exact results on the curvature of the electron density at the cusp in certain highly excited states of atoms. Chem. Phys. Lett. 2000, 332, 154–158. [Google Scholar] [CrossRef]
- Ayers, P.W. Density per particle as a descriptor of Coulombic systems. Proc. Natl. Acad. Sci. USA 2000, 97, 1959–1964. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Á.; Sen, K.D. Higher-order cusp of the density in certain highly excited states of atoms and molecules. J. Phys. B 2000, 33, 1745–1752. [Google Scholar] [CrossRef]
- Nagy, Á.; Sen, K.D. Ground- and excited-state cusp conditions for the electron density. J. Chem. Phys. 2001, 115, 6300–6308. [Google Scholar] [CrossRef]
- Wilson, B.E. Symmetry, nodal surfaces, and energy ordering of molecular orbitals. J. Chem. Phys. 1975, 63, 4870–4879. [Google Scholar] [CrossRef]
- Korsch, H.J. On the nodal behaviour of eigenfunctions. Phys. Lett. A 1983, 97, 77–80. [Google Scholar] [CrossRef]
- Hatano, Y.; Yamamoto, S.; Tatewaki, H. Characterization of molecular orbitals by counting nodal regions. J. Comp. Chem. 2005, 26, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Hatano, Y.; Yamamoto, S.; Tatewaki, H. Counting nodal surfaces in molecular orbitals: Elimination of artificial nodes. Comp. Theor. Chem. 2014, 1045, 99–112. [Google Scholar] [CrossRef]
- Della-Sala, F.; Görling, A. Efficient localized Hartree—Fock methods as effective exact-exchange Kohn—Sham methods for molecules. J. Chem. Phys. 2001, 115, 5718–5732. [Google Scholar] [CrossRef]
- Krieger, J.B.; Li, Y.; Iafrate, G.J. Derivation and application of an accurate Kohn-Sham potential with integer discontinuity. Phys. Lett. A 1990, 146, 256–260. [Google Scholar] [CrossRef]
- Noumerov, B.V. A method of extrapolation of perturbations. Mon. Not. R. Astron. Soc. 1924, 84, 592. [Google Scholar] [CrossRef]
- Herman, F.; Skillman, S. Atomic Structure Calculations; Prentice-Hall: Englewood Cliffs, NJ, USA; New York, NY, USA, 1963. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, Á. Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle. Computation 2021, 9, 93. https://doi.org/10.3390/computation9080093
Nagy Á. Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle. Computation. 2021; 9(8):93. https://doi.org/10.3390/computation9080093
Chicago/Turabian StyleNagy, Ágnes. 2021. "Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle" Computation 9, no. 8: 93. https://doi.org/10.3390/computation9080093
APA StyleNagy, Á. (2021). Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle. Computation, 9(8), 93. https://doi.org/10.3390/computation9080093