Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications
Abstract
:1. Introduction
2. Microbial-Mediated Biosynthesis of Nanomaterials for Sensoristic and Biomedical Applications
2.1. Bacteria
2.2. Yeasts and Molds
2.3. Microalgae
3. Towards a Large-Scale Applicability: Knowledge, Issues, and Potentiality
3.1. Nanoparticles Dispersion and Capping Layers
3.2. Cell Culture Conditions
3.3. Biochemistry, Molecular Biology, and Genetics
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Inshakova, E.; Inshakov, O. World market for nanomaterials: Structure and trends. In Proceedings of the MATEC Web of Conferences, Sevastopol, Russia, 11–15 September 2017; EDP Sciences: Les Ulis, France, 2017; Volume 129, p. 02013. [Google Scholar] [CrossRef]
- Şengül, H.; Theis, T.L.; Ghosh, S. Toward sustainable nanoproducts: An overview of nanomanufacturing methods. J. Ind. Ecol. 2008, 12, 329–359. [Google Scholar] [CrossRef]
- Fang, F.Z.; Zhang, X.D.; Gao, W.; Guo, Y.B.; Byrne, G.; Hansen, H.N. Nanomanufacturing—Perspective and applications. CIRP Ann. 2017, 66, 683–705. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Zhang, T. Environmental Implications of Nano-manufacturing. In Green Manufacturing; Dornfeld, D., Ed.; Springer: Boston, MA, USA, 2013. [Google Scholar] [CrossRef]
- Ribeiro, B.D.; Coelho, M.A.Z.; de Castro, A.M. Principles of Green Chemistry and White Biotechnology. In White Biotechnology for Sustainable Chemistry; Coelho, M.A.Z., Ribeiro, B.D., Eds.; The Royal Society of Chemistry: London, UK, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, Z.S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Abbas, S.; Fariq, A.; Yasmin, A. Microbes: Nature’s cell factories of nanoparticles synthesis. In Exploring the Realms of Nature for Nanosynthesis; Springer: Cham, Switzerland, 2018; pp. 25–50. [Google Scholar] [CrossRef]
- Hulkoti, N.I.; Taranath, T.C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surf. B Biointerfaces 2014, 121, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Kröger, N.; Poulsen, N. Diatoms—From cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 2008, 42, 83–107. [Google Scholar] [CrossRef] [PubMed]
- Skeffington, A.W.; Scheffel, A. Exploiting algal mineralization for nanotechnology: Bringing coccoliths to the fore. Curr. Opin. Biotechnol. 2018, 49, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Da, H.; Zhang, S.; Lopez, V.M.; Wang, W. Bacterial magnetosome and its potential application. Microbiol. Res. 2017, 203, 19–28. [Google Scholar] [CrossRef]
- Gama, M.; Gatenholm, P.; Klemm, D. (Eds.) Bacterial Nanocellulose: A sophisticated Multifunctional Material; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Nwodo, U.; Green, E.; Okoh, A. Bacterial exopolysaccharides: Functionality and prospects. Int. J. Mol. Sci. 2012, 13, 14002–14015. [Google Scholar] [CrossRef] [Green Version]
- Malvankar, N.S.; Lovley, D.R. Microbial nanowires: A new paradigm for biological electron transfer and bioelectronics. ChemSusChem 2012, 5, 1039–1046. [Google Scholar] [CrossRef]
- Prasad, R.; Pandey, R.; Barman, I. Engineering tailored nanoparticles with microbes: Quo vadis? Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 316–330. [Google Scholar] [CrossRef]
- Dragone, R.; Grasso, G.; Muccini, M.; Toffanin, S. Portable bio/chemosensoristic devices: Innovative systems for environmental health and food safety diagnostics. Front. Public Health 2017, 5, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nature Rev. Drug Discov. 2010, 9, 615. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, F.; Mertens, M.E.; Grimm, J.; Lammers, T. Nanoparticles for imaging: Top or flop? Radiology 2014, 273, 10–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Yang, L.; Zhang, B.; Liu, J. Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf. B Biointerfaces 2010, 80, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Jiang, H.; Liu, X.; Wang, E. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem. Commun. 2007, 9, 1165–1170. [Google Scholar] [CrossRef]
- Ramya, S.; Shanmugasundaram, T.; Balagurunathan, R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J. Trace Elem. Med. Biol. 2015, 32, 30–39. [Google Scholar] [CrossRef]
- Bao, H.; Lu, Z.; Cui, X.; Qiao, Y.; Guo, J.; Anderson, J.M.; Li, C.M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 2010, 6, 3534–3541. [Google Scholar] [CrossRef]
- Suresh, A.K.; Pelletier, D.A.; Wang, W.; Broich, M.L.; Moon, J.W.; Gu, B.; Allison, D.P.; Joy, D.C.; Phelps, T.J.; Doktycz, M.J. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 2011, 7, 2148–2152. [Google Scholar] [CrossRef]
- Suresh, A.K.; Pelletier, D.A.; Wang, W.; Moon, J.W.; Gu, B.; Mortensen, N.P.; David, P.; Allison, D.C.; Joy, C.; Phelps, T.J.; et al. Silver nanocrystallites: Biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ. Sci. Technol. 2010, 44, 5210–5215. [Google Scholar] [CrossRef]
- Manivasagan, P.; Alam, M.S.; Kang, K.H.; Kwak, M.; Kim, S.K. Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities. Bioprocess Biosyst. Eng. 2015, 38, 1167–1177. [Google Scholar] [CrossRef]
- Roychoudhury, P.; Gopal, P.K.; Paul, S.; Pal, R. Cyanobacteria assisted biosynthesis of silver nanoparticles—A potential antileukemic agent. J. Appl. Phycol. 2016, 28, 3387–3394. [Google Scholar] [CrossRef]
- Al-Dhabi, N.; Mohammed Ghilan, A.K.; Arasu, M. Characterization of silver nanomaterials derived from marine Streptomyces sp. al-dhabi-87 and its in vitro application against multidrug resistant and extended-spectrum beta-lactamase clinical pathogens. Nanomaterials 2018, 8, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, W.; Liu, H.; Liu, X.; Sun, H.; Wang, S.; Zhang, R. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int. J. Biol. Macromol. 2015, 76, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.K.; Campos, V.L.; León, C.G.; Rodríguez-Llamazares, S.M.; Rojas, S.M.; Gonzalez, M.; Mondaca, M.A. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart. Res. 2012, 14, 1236. [Google Scholar] [CrossRef]
- Kalishwaralal, K.; Banumathi, E.; Pandian, S.R.K.; Deepak, V.; Muniyandi, J.; Eom, S.H.; Gurunathan, S. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf. B Biointerfaces 2009, 73, 51–57. [Google Scholar] [CrossRef]
- Kalishwaralal, K.; Deepak, V.; Pandian, S.R.K.; Kottaisamy, M.; BarathManiKanth, S.; Kartikeyan, B.; Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf. B Biointerfaces 2010, 77, 257–262. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Yasser, M.M.; Sholkamy, E.N.; Ali, A.M.; Mehanni, M.M. Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int. J. Nanomed. 2015, 10, 3389. [Google Scholar] [CrossRef] [Green Version]
- Gurunathan, S.; Han, J.W.; Eppakayala, V.; Kim, J.H. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. Int. J. Nanomed. 2013, 8, 1015. [Google Scholar] [CrossRef] [Green Version]
- Golmohammadi, H.; Morales-Narvaez, E.; Naghdi, T.; Merkoci, A. Nanocellulose in sensing and biosensing. Chem. Mater. 2017, 29, 5426–5446. [Google Scholar] [CrossRef]
- Saxena, I.M.; Dandekar, T.; Brown, R.M. Mechanisms in cellulose biosynthesis. Mol. Biol. 2004. Available online: http://www.esf.edu/outreach/pd/2000/cellulose/saxena.pdf (accessed on 10 November 2019).
- Pourreza, N.; Golmohammadi, H.; Naghdi, T.; Yousefi, H. Green in-Situ Synthesized Silver Nanoparticles Embedded in Bacterial Cellulose Nanopaper as a Bionanocomposite Plasmonic Sensor. Biosens. Bioelectron. 2015, 74, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Morales-Narváez, E.; Golmohammadi, H.; Naghdi, T.; Yousefi, H.; Kostiv, U.; Horák, D.; Pourreza, N.; Merkoçi, A. Nanopaper as an Optical Sensing Platform. ACS Nano 2015, 9, 7296–7305. [Google Scholar] [CrossRef]
- Li, C.; Zhou, L.; Yang, H.; Lv, R.; Tian, P.; Li, X.; Zhang, Y.; Chen, Z.; Lin, F. Self-assembled exopolysaccharide nanoparticles for bioremediation and green synthesis of noble metal nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 22808–22818. [Google Scholar] [CrossRef] [PubMed]
- Simonte, F.; Sturm, G.; Gescher, J.; Sturm-Richter, K. Extracellular electron transfer and biosensors. In Bioelectrosynthesis; Springer: Cham, Switzerland, 2017; pp. 15–38. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Xu, A.; Zhang, L.; Liu, H.; Ma, L.Z. Biological synthesis of high-conductive pili in aerobic bacterium Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2019, 103, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Sure, S.; Torriero, A.A.; Gaur, A.; Li, L.H.; Chen, Y.; Tripathi, C.; Adholeya, A.; Ackland, M.L.; Kochar, M. Inquisition of Microcystis aeruginosa and Synechocystis nanowires: Characterization and modelling. Antonie Van Leeuwenhoek 2015, 108, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.M.; Wanger, G.; El-Naggar, M.Y.; Gorby, Y.; Southam, G.; Lau, W.M.; Yang, J. Shewanella oneidensis MR-1 bacterial nanowires exhibit p-type, tunable electronic behavior. Nano Lett. 2013, 13, 2407–2411. [Google Scholar] [CrossRef]
- Davila, D.; Esquivel, J.P.; Sabate, N.; Mas, J. Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens. Bioelectron. 2011, 26, 2426–2430. [Google Scholar] [CrossRef]
- Wang, X.; Gao, N.; Zhou, Q. Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems. Biosens. Bioelectron. 2013, 43, 264–267. [Google Scholar] [CrossRef]
- Webster, D.P.; TerAvest, M.A.; Doud, D.F.; Chakravorty, A.; Holmes, E.C.; Radens, C.M.; Sureka, S.; Gralnick, J.A.; Angenent, L.T. An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens. Bioelectron. 2014, 62, 320–324. [Google Scholar] [CrossRef]
- Vargas, G.; Cypriano, J.; Correa, T.; Leão, P.; Bazylinski, D.A.; Abreu, F. Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: Mini-review. Molecules 2018, 23, 2438. [Google Scholar] [CrossRef] [Green Version]
- Boucher, M.; Geffroy, F.; Prévéral, S.; Bellanger, L.; Selingue, E.; Adryanczyk-Perrier, G.; Péan, M.; Lefèvre, C.T.; Pignol, D.; Ginet, N.; et al. Genetically tailored magnetosomes used as MRI probe for molecular imaging of brain tumor. Biomaterials 2017, 121, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Alphandery, E.; Faure, S.; Seksek, O.; Guyot, F.; Chebbi, I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano 2011, 5, 6279–6296. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Cevenini, L.; Borg, S.; Michelini, E.; Calabretta, M.M.; Schüler, D. Bioengineered bioluminescent magnetotactic bacteria as a powerful tool for chip-based whole-cell biosensors. Lab Chip 2013, 13, 4881–4889. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.Y.; Lin, Y.; Li, Y.; Xiong, L.H.; Cui, R.; Xie, Z.X.; Pang, D.W. Nanomechanical analysis of yeast cells in CdSe quantum dot biosynthesis. Small 2014, 10, 699–704. [Google Scholar] [CrossRef] [PubMed]
- Wei, R. Biosynthesis of Au–Ag alloy nanoparticles for sensitive electrochemical determination of paracetamol. Int. J. Electrochem. Sci. 2017, 12, 9131–9140. [Google Scholar] [CrossRef]
- Zheng, D.; Hu, C.; Gan, T.; Dang, X.; Hu, S. Preparation and application of a novel vanillin sensor based on biosynthesis of Au–Ag alloy nanoparticles. Sens. Actuators B Chem. 2010, 148, 247–252. [Google Scholar] [CrossRef]
- Korbekandi, H.; Mohseni, S.; Mardani Jouneghani, R.; Pourhossein, M.; Iravani, S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif. Cells Nanomed. Biotechnol. 2016, 44, 235–239. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Brar, S.K.; Kaur, S.; Verma, M. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Crit. Rev. Biotechnol. 2012, 32, 49–73. [Google Scholar] [CrossRef]
- Syed, A.; Saraswati, S.; Kundu, G.C.; Ahmad, A. Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 114, 144–147. [Google Scholar] [CrossRef]
- Husseiny, S.M.; Salah, T.A.; Anter, H.A. Biosynthesis of size-controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni Suef Univ. J. Basic Appl. Sci. 2015, 4, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Saravanakumar, K.; Chelliah, R.; MubarakAli, D.; Jeevithan, E.; Oh, D.H.; Kathiresan, K.; Wang, M.H. Fungal enzyme-mediated synthesis of chitosan nanoparticles and its biocompatibility, antioxidant and bactericidal properties. Int. J. Biol. Macromol. 2018, 118, 1542–1549. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Tripathy, S.K.; Wahab, R.; Jeong, S.H.; Hwang, I.; Yang, Y.B.; Kim, Y.S.; Shin, H.S.; Yun, S.I. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells. Appl. Microbiol. Biotechnol. 2011, 92, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Elsoud, M.M.A.; Al-Hagar, O.E.; Abdelkhalek, E.S.; Sidkey, N.M. Synthesis and investigations on tellurium myconanoparticles. Biotechnol. Rep. 2018, 18, e00247. [Google Scholar] [CrossRef] [PubMed]
- Uddandarao, P.; Balakrishnan, R.M.; Ashok, A.; Swarup, S.; Sinha, P. Bioinspired ZnS: Gd Nanoparticles Synthesized from an Endophytic Fungi Aspergillus flavus for Fluorescence-Based Metal Detection. Biomimetics 2019, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, U.; Akshay Gowda, K.M.; Elisha, M.G.; Nitish, N. Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int. Biodeterior. Biodegrad. 2017, 119, 78–86. [Google Scholar] [CrossRef]
- Dahoumane, S.A.; Mechouet, M.; Alvarez, F.J.; Agathos, S.N.; Jeffryes, C. Microalgae: An outstanding tool in nanotechnology. Bionatura 2016, 1, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Senapati, S.; Syed, A.; Moeez, S.; Kumar, A.; Ahmad, A. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater. Lett. 2012, 79, 116–118. [Google Scholar] [CrossRef]
- Jena, J.; Pradhan, N.; Nayak, R.R.; Dash, B.P.; Sukla, L.B.; Panda, P.K.; Mishra, B.K. Microalga Scenedesmus sp.: A potential low-cost green machine for silver nanoparticle synthesis. J. Microbiol. Biotechnol. 2014, 24, 522–533. [Google Scholar] [CrossRef]
- Öztürk, B.Y. Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: Their Antibacterial and antifungal effects. Caryol. Int. J. Cytol. Cytosystem. Cytogenet. 2019, 72, 29–43. [Google Scholar] [CrossRef]
- Fuhrmann, T.; Landwehr, S.; El Rharbi-Kucki, M.; Sumper, M. Diatoms as living photonic crystals. Appl. Phys. B 2004, 78, 257–260. [Google Scholar] [CrossRef]
- Losic, D.; Mitchell, J.G.; Voelcker, N.H. Diatomaceous lessons in nanotechnology and advanced materials. Adv. Mater. 2009, 21, 2947–2958. [Google Scholar] [CrossRef]
- Aguirre, L.E.; Ouyang, L.; Elfwing, A.; Hedblom, M.; Wulff, A.; Inganäs, O. Diatom frustules protect DNA from ultraviolet light. Sci. Rep. 2018, 8, 5138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazumder, N.; Gogoi, A.; Kalita, R.D.; Ahmed, G.A.; Buragohain, A.K.; Choudhury, A. Luminescence studies of fresh water diatom frustules. Indian J. Phys. 2010, 84, 665–669. [Google Scholar] [CrossRef]
- LeDuff, P.; Roesijadi, G.; Rorrer, G.L. Micro-photoluminescence of single living diatom cells. Luminescence 2016, 31, 1379–1383. [Google Scholar] [CrossRef]
- Ragni, R.; Cicco, S.R.; Vona, D.; Farinola, G.M. Multiple routes to smart nanostructured materials from diatom microalgae: A chemical perspective. Adv. Mater. 2018, 30, 1704289. [Google Scholar] [CrossRef]
- De Stefano, L.; Rotiroti, L.; De Stefano, M.; Lamberti, A.; Lettieri, S.; Setaro, A.; Maddalena, P. Marine diatoms as optical biosensors. Biosens. Bioelectron. 2009, 24, 1580–1584. [Google Scholar] [CrossRef]
- Gale, D.K.; Gutu, T.; Jiao, J.; Chang, C.H.; Rorrer, G.L. Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv. Funct. Mater. 2009, 19, 926–933. [Google Scholar] [CrossRef]
- Lin, K.C.; Kunduru, V.; Bothara, M.; Rege, K.; Prasad, S.; Ramakrishna, B.L. Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens. Bioelectron. 2010, 25, 2336–2342. [Google Scholar] [CrossRef]
- Li, A.; Cai, J.; Pan, J.; Wang, Y.; Yue, Y.; Zhang, D. Multi-layer hierarchical array fabricated with diatom frustules for highly sensitive bio-detection applications. J. Micromech. Microeng. 2014, 24, 025014. [Google Scholar] [CrossRef]
- Kamińska, A.; Sprynskyy, M.; Winkler, K.; Szymborski, T. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma. Anal. Bioanal. Chem. 2017, 409, 6337–6347. [Google Scholar] [CrossRef] [Green Version]
- Zhen, L.; Ford, N.; Gale, D.K.; Roesijadi, G.; Rorrer, G.L. Photoluminescence detection of 2, 4, 6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment. Biosens. Bioelectron. 2016, 79, 742–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pannico, M.; Rea, I.; Chandrasekaran, S.; Musto, P.; Voelcker, N.H.; De Stefano, L. Electroless gold-modified diatoms as surface-enhanced Raman scattering supports. Nanoscale Res. Lett. 2016, 11, 315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onesto, V.; Villani, M.; Coluccio, M.L.; Majewska, R.; Alabastri, A.; Battista, E.; Schirato, A.; Calestani, D.; Coppedé, N.; Cesarelli, M.; et al. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications. Nanoscale Res. Lett. 2018, 13, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gnanamoorthy, P.; Anandhan, S.; Prabu, V.A. Natural nanoporous silica frustules from marine diatom as a biocarrier for drug delivery. J. Porous Mater. 2014, 21, 789–796. [Google Scholar] [CrossRef]
- Lo Presti, M.; Ragni, R.; Vona, D.; Leone, G. In vivo doped biosilica from living Thalassiosira weissflogii diatoms with a triethoxysilyl functionalized red emitting fluorophore. Biomater. Soft Mater. 2018, 3, 1509–1517. [Google Scholar] [CrossRef]
- Terracciano, M.; De Stefano, L.; Rea, I. Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems. Pharmaceutics 2018, 10, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Chong, X.; Squire, K.; Wang, A.X. Microfluidic diatomite analytical devices for illicit drug sensing with ppb-Level sensitivity. Sens. Actuators B Chem. 2018, 259, 587–595. [Google Scholar] [CrossRef]
- Kong, X.; Yu, Q.; Li, E.; Wang, R.; Liu, Q.; Wang, A. Diatomite photonic crystals for facile on-chip chromatography and sensing of harmful ingredients from food. Materials 2018, 11, 539. [Google Scholar] [CrossRef] [Green Version]
- Panwar, V.; Dutta, T. Diatom Biogenic Silica as a Felicitous Platform for Biochemical Engineering: Expanding Frontiers. ACS Appl. Bio Mater. 2019, 2, 2295–2316. [Google Scholar] [CrossRef]
- Jena, J.; Pradhan, N.; Dash, B.P.; Panda, P.K.; Mishra, B.K. Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J. Saudi Chem. Soc. 2015, 19, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Chetia, L.; Kalita, D.; Ahmed, G.A. Synthesis of Ag nanoparticles using diatom cells for ammonia sensing. Sens. Bio Sens. Res. 2017, 16, 55–61. [Google Scholar] [CrossRef]
- Kim, S.H.; Nam, O.; Jin, E.; Gu, M.B. A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosens. Bioelectron. 2019, 123, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.H.; Shanmugam, V.; Yeh, C.S. Nanoparticle biosynthesis using unicellular and subcellular supports. NPG Asia Mater. 2015, 7, e209. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010, 156, 1–13. [Google Scholar] [CrossRef]
- Voeikova, T.A.; Zhuravliova, O.A.; Bulushova, N.V.; Veiko, V.P.; Ismagulova, T.T.; Lupanova, T.N.; Shaitan, K.V.; Debabov, V.G. The “Protein Corona” of Silver-Sulfide Nanoparticles Obtained Using Gram-Negative and-Positive Bacteria. Mol. Genet. Microbiol. Virol. 2017, 32, 204–211. [Google Scholar] [CrossRef]
- Jacek, P.; Dourado, F.; Gama, M.; Bielecki, S. Molecular aspects of bacterial nanocellulose biosynthesis. Microb. Biotechnol. 2019, 12, 633–649. [Google Scholar] [CrossRef] [Green Version]
- Ayano, H.; Kuroda, M.; Soda, S.; Ike, M. Effects of culture conditions of Pseudomonas aeruginosa strain RB on the synthesis of CdSe nanoparticles. J. Biosci. Bioeng. 2015, 119, 440–445. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kalishwaralal, K.; Vaidyanathan, R.; Venkataraman, D.; Pandian, S.R.K.; Muniyandi, J.; Hariharana, N.; Eom, S.H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces 2009, 74, 328–335. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Kalaichelvan, P.T.; Venkatesan, R. Fungal based synthesis of silver nanoparticles—An effect of temperature on the size of particles. Colloids Surf. B Biointerfaces 2009, 74, 123–126. [Google Scholar] [CrossRef]
- Pimprikar, P.S.; Joshi, S.S.; Kumar, A.R.; Zinjarde, S.S.; Kulkarni, S.K. Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf. B Biointerfaces 2009, 74, 309–316. [Google Scholar] [CrossRef]
- Ramanathan, R.; O’Mullane, A.P.; Parikh, R.Y.; Smooker, P.M.; Bhargava, S.K.; Bansal, V. Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 2010, 27, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Lundholm, N.; Ellegaard, M. Effects of abiotic factors on the nanostructure of diatom frustules—Ranges and variability. Appl. Microbiol. Biotechnol. 2018, 102, 5889–5899. [Google Scholar] [CrossRef] [PubMed]
- Townley, H.E.; Woon, K.L.; Payne, F.P.; White-Cooper, H.; Parker, A.R. Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnology 2007, 18, 295101. [Google Scholar] [CrossRef]
- Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G.L. Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano 2008, 2, 2103–2112. [Google Scholar] [CrossRef]
- Lang, Y.; Del Monte, F.; Rodriguez, B.J.; Dockery, P.; Finn, D.P.; Pandit, A. Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis. Sci. Rep. 2013, 3, 3205. [Google Scholar] [CrossRef] [Green Version]
- Rorrer, G.L.; Chang, C.H.; Liu, S.H.; Jeffryes, C.; Jiao, J.; Hedberg, J.A. Biosynthesis of silicon–germanium oxide nanocomposites by the marine diatom Nitzschia frustulum. J. Nanosci. Nanotechnol. 2005, 5, 41–49. [Google Scholar] [CrossRef]
- Qin, T.; Gutu, T.; Jiao, J.; Chang, C.H.; Rorrer, G.L. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. ACS Nano 2008, 2, 1296–1304. [Google Scholar] [CrossRef]
- Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G.L. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mater. Sci. Eng. C 2008, 28, 10–118. [Google Scholar] [CrossRef]
- Jeffryes, C.; Solanki, R.; Rangineni, Y.; Wang, W.; Chang, C.H.; Rorrer, G.L. Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv. Mater. 2008, 20, 2633–2637. [Google Scholar] [CrossRef]
- Magnabosco, G.; Hauzer, H.; Fermani, S.; Calvaresi, M.; Corticelli, F.; Christian, M.; Albonetti, C.; Morandi, V.; Ere, J.; Falini, G. Bionics synthesis of magnetic calcite skeletal structure through living foraminifera. Mater. Horiz. 2019, 6, 1862–1867. [Google Scholar] [CrossRef]
- Zhang, R.; Shao, M.; Han, X.; Wang, C.; Li, Y.; Hu, B.; Pang, D.; Xie, Z. ATP synthesis in the energy metabolism pathway: A new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae. Int. J. Nanomed. 2017, 12, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, T.J.; Lee, S.Y.; Heo, N.S.; Seo, T.S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew. Chem. Int. Ed. 2010, 49, 7019–7024. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, T.J.; Lee, D.C.; Lee, S.Y. Recombinant Escherichia coli as a biofactory for various single-and multi-element nanomaterials. Proc. Natl. Acad. Sci. USA 2018, 115, 5944–5949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, C.; Wang, Y.; Zhang, J.; Huang, H.; Xu, L.; Wang, S.; Fang, X.; Fang, J.; Mao, C.; Xu, S. Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J. Biotechnol. 2011, 153, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Taweecheep, P.; Naloka, K.; Matsutani, M.; Yakushi, T.; Matsushita, K.; Theeragool, G. Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens. Carbohyd. Polym. 2019, 115243. [Google Scholar] [CrossRef]
- Tan, Y.; Adhikari, R.Y.; Malvankar, N.S.; Pi, S.; Ward, J.E.; Woodard, T.L.; Nevin, K.P.; Xia, Q.; Tuominen, M.T.; Lovley, D.R. Synthetic biological protein nanowires with high conductivity. Small 2016, 12, 4481–4485. [Google Scholar] [CrossRef]
- Delalat, B.; Sheppard, V.C.; Ghaemi, S.R.; Rao, S.; Prestidge, C.A.; McPhee, G.; Rogers, M.-L.; Donoghue, J.F.; Pillay, V.; Johns, T.G.; et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 2015, 6, 8791. [Google Scholar] [CrossRef] [Green Version]
- Görlich, S.; Pawolski, D.; Zlotnikov, I.; Kröger, N. Control of biosilica morphology and mechanical performance by the conserved diatom gene Silicanin-1. Commun. Biol. 2019, 2, 245. [Google Scholar] [CrossRef]
- Nam, O.; Park, J.M.; Lee, H.; Jin, E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS ONE 2019, 14, e0221938. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Culture Conditions (Synthesis Time) | Nanomaterial | Characterization | Biosynthetic Pathway | Application | Ref. |
---|---|---|---|---|---|---|
Bacillus subtilis | Enrichment medium, 35 °C, stirred at 170 rpm + 4 mM Na2SeO3 (48 h) | Se NPs | 50–400 nm; spherical regular morphology; 100 nm uniform single-crystalline; nanowires | Reduction mechanism of SeO32− ions to Se0 is yet to be elucidated | H2O2 sensoristic device | [19] |
Streptomyces minutisclero-ticus M10A62 | 5 g of wet bacterial biomass from 120 h cell culture + 1 mM Na2SeO3, stirred at 200 rpm (72 h) | Se NPs | 10–250 nm; spherical shape; crystalline; ζ-potential −19.1 mV | Extracellular synthesis not described | Anti-biofilm, antioxidant activity, antiviral activity against Dengue virus; anti-proliferative activity against HeLa and HepG2 cell lines | [21] |
Pantoea agglomerans strain UC-32 | 1% (v/v) of an overnight cell culture in tryptic soy broth + 1 mM Na2SeO3, 25 °C (24 h) | Se NPs | <100 nm; spherical shape; amorphous form size vary with culture time (10–24 h); | Intracellular reduction of Se (IV) to Se (0) and subsequent excretion | High antioxidant activity (when stabilized with L-cysteine) | [29] |
Streptomyces bikiniensis strain Ess_amA-1 | 1 mL fresh bacteria inoculums (OD600 = 0.5 a.u.) in international Streptomyces Project 2 medium + 1 mM SeO2, 30 °C, stirred at 150 rpm (48 h) | Se NPs | 600 nm length, 17 nm diameter | Possible involvement of proteins/enzymes in SeO2 reduction nucleation, growth, stabilization of nanorods | In vitro anticancer activity against human breast adenocarcinoma cell line and human liver carcinoma cell line | [32] |
Escherichia coli DH5α | 10 h culture, resuspended in sterile distilled water + 1 mM HAuCl4, room temperature (120 h) | Au NPs | 25 ± 8 nm; spherical shape; crystalline form (face centered cubic phase) | Extracellular synthesis possibly modulated by sugars or enzymes present onto bacteria surface | Direct electro-chemistry of hemoglobin | [20] |
Shewanella oneidensis MR-1 | Washed cell pellet from a 24 h cell culture + 1 mM HAuCl4, 30 °C, stirred at 200 rpm (48 h) | Au NPs | 12 ± 5 nm; spherical shape, capping proteins easily removable but not identified | Extracellular synthesis possible electron shuttle-based enzymatic reduction of ionic Au3+ to Au0 | No antibacterial properties/annealing and thin film formation | [23] |
Nocardiopsis sp. MBRC-48 | Cell-free supernatant (from a 96 h cell culture) + 0.9 mM HAuCl4, incubated in the dark, 35 °C, stirred at 180 rpm (48 h) | Au NPs | 11.57 ± 1.24 nm; spherical shape; face centered cubic; polydispersed without significant structure | Extracellular synthesis using the cell free supernatant, proteins, enzymes and metabolites | High antimicrobial activity against Staphylococcus aureus and Candida albicans, antioxidant activity and cytotoxic activities | [25] |
Brevibacterium casei | 1 g of wet bacterial biomass + 1 × 10−3 M AgNO3 + 1 × 10−3 M HAuCl4, 37 °C, stirred at 200 rpm (24 h) | Au and Ag NPs | Ag 10–50 nm, Au, 0–50 nm; spherical shape, crystalline form (face centered cubic phase) | Intracellular synthesis, possible roles of NADH-dependent nitrate reductase (for Ag NPs) and α-NADPH-dependent sulfite reductase (for Au NPs) | Anti-coagulant properties | [31] |
Shewanella oneidensis MR-1 | ∼3–5 g of wet bacterial biomass from 24 h cell culture + 1 mM AgNO3, 30 °C stirred at 200 rpm (48 h | Ag NPs | ∼2–11 nm spherical shape; crystalline form; ζ-potential = −16.5 mV | Extracellular synthesis by secreted factors (e.g., NADH-dependent reductases, quinines, soluble electron-shuttles) | Antibacterial activity against Escherichia coli and Bacillus subtilis | [24] |
Lyngbya majuscula (CUH/Al/MW-150) | 100 mg of fresh weight biomass + 9 mM Ag(I) solution (pH 4) incubated in the dark, room temperature (72 h) | Ag NPs | ∼5–50 nm; spherical shape, crystalline form (face-centered cubic), smooth surface morphology, both (sonication) ζ-potential = −35.2 mV | Extracellular and intracellular synthesis not described | Effective antibacterial activity against Pseudomonas aeruginosa; appreciable anti-proliferative effect on leukemic cells, especially on the REH cell line | [26] |
Streptomyces s. Al-Dhabi-87 | Broth-free cell pellets (14-days cell culture) in sterile distilled water for 1 h; cell removed from the suspension + 1–5 mM AgNO3, 37 °C (48 h) | Ag NPs | 20–50 nm; spherical shape | Extracellular synthesis possibly via hydrophilic and hydrophobic small metabolites attached on the bacteria cell wall | In vitro antimicrobial activity against Bacillus subtilis, Enterococcus faecalis, Staphylo-coccus epi-dermidis, and multidrug resistant Staphylococcus aureus strain | [27] |
Bacillus licheniformis | 2 g of wet bacterial biomass + 1 mM AgNO3, 37 °C, stirred at 200 rpm (24 h) | Ag NPs | 40 nm to 50 nm | N/A | Possible application as anti-proliferative and anti-migration agent e.g., against diabetic retinopathy, neoplasia and rheumatoid arthritis | [30] |
Escherichia coli K12 (ATCC 29181) | Bacterial culture (OD600 = 0.6 a.u.), Luria Bertani medium + 3 mM CdCl2 + 6 mM Na3C6H5O7 + 0.8 mM Na2TeO3, 8 mM C4H6O4S + 26 mM NaBH4, 37 °C, stirred at 200 rpm (24 h) | CdTe QDs | ∼2–3 nm; uniform size, cubic crystals; strong fluorescence emission shift with increasing quantum dots size, capping proteins were not identified but enhance QDs biocompatibility; ζ-potential = −19.1 mV | Extracellular synthesis possibly via protein-assisted nucleation biosynthesis | Possible application in vitro cell imaging (demonstrated on HeLa cells) and bio-labeling | [22] |
Acetobacter xylinus GIM1.327 | Static culture in polysaccharides enriched medium, 30 °C (120 h) | Bacterial nanocellulose nanofibrils impregnated with Ag-NPs | Nanoporous three-dimensional network structure with a random arrangement of ribbon-shaped microfibrils without any preferential orientation; 2 to 100 nm (Ag NPs) | Intracellular-extracellular synthesis via enzymes glucokinase, phosphoglucomutase, UDPG, pyro-phospho-rylase and cellulose synthase | In vitro pH-responsive antimicrobial activity against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 9372 and Candida albicans CMCC(F) 98001 | [28,35] |
Acetobacter xylinum | N/A | Ag NPs and bacterial nano-paper composite | AgNPs 10–50 nm | Intracellular-extracellular synthesis of bacterial nanocellulose via enzymes glucokinase, phosphoglucomutase, UDPG, pyro-phospho-rylase and cellulose synthase AgNPs synthesis via direct chemical reduction of Ag+ mediated by baring hydroxyl groups of bacterial nanocellulose | Optical detection of cyanide ion and 2-mercaptobenzo-thiazole in water samples | [35,36] |
Acetobacter xylinum | Static culture containing 50 g/L glucose, 5 g/L yeast extract, 5 g/L (NH4)2SO4, 4 g/L KH2PO4 and 0.1 g/L MgSO4·7H2O, 28 °C (366 h) | Nanocompositesof bacterial nanocellulose with AgNP, Au-NPs CdSe@ZnS quantum dots functionalized with biotinylated antibodies, aminosilica-coated lanthanide-doped up-conversion NPs | (bacterial nanocellulose) 45 ± 10 nm (fiber mean diameter); estimated length > 10 μm | Intracellular-extracellular synthesis via enzymes glucokinase, phosphoglucomutase, UDPG, pyro-phospho-rylase and cellulose synthase | Optical detection of methimazole, thiourea, cyanide, and iodide and Escherichia coli; possible uses in analytes pre-concentration platform | [35,37] |
Bacillus marisflavi GS3 | 200 mg biomass + 2.4 × 10−5 M graphene oxide dispersion mixture, 37 °C (72 h) | Reduced graphene oxide nanosheets | ~4.3 nm (average thickness), significant reduction of GO (assessed by XRD analysis); several layers stacked on top of one another like silky sheets of paper (SEM image) | Extracellular synthesis not described | Inhibition of cell viability, reactive oxygen species (ROS) generation, and membrane integrity alteration in MCF-7 cell line | [33] |
Magnetospirillum magneticum AMB-1 (Genetically modified) | Anaerobically grown in 5 ml/L of Wolfe’s mineral solution (without iron), + 5 mM KH2PO4 + 10 mM NaNO3 + 0.85 mM C2H3NaO2 + 0.2 mM C6H8O6 + 2.5 mM C4H6O6 + 0.6 mM Na2S2O3, pH 6.9; cell pellets were resuspended in 20 mM HEPES + 1 mM EDTA + 8% glycerol + 0.9% NaCl, pH 7.5 | Magnetosome (bio-mineralized iron-oxide nanoparticles coated by a biological membrane) | Magnetosome membrane modified with Venus-RGD protein as specific and sensitive molecular imaging probe | Natural mechanism of magneto-somes formation (biomineralization) + genetic modification for Venus protein- RGD peptide expression | Contrast agent for in vivo magnetic resonance-based molecular imaging | [47] |
Magnetospirillum magneticum strain AMB-1 | Micro-anaerobically grown in a similar culture medium of [47] | Whole inactive magnetotactic bacteria γ-Fe2O3 magnetosomes chains individual γ-Fe2O3 magnetosomes | Magnetosomes chains (length) ∼150 or ∼300 nm; individual magnetosomes mean size ∼45 nm; well-crystallized monodomain with a ferromagnetic behavior at physiological temperature | Natural mechanism of magneto-somes formation + genetic modification for Venus protein- RGD peptide expression | Antitumoral activity against MDA-MB-231 breast cancer cells under alternating magnetic field stimulation | [48] |
Magnetospirillum gryphiswaldense strain MSR-1 | Micro-anaerobically grown in a similar culture medium of [47] and [48] + 50μM Fe(III) citrate | Chains of magnetosomes | Magnetosome membrane modified with Red-emitting Click Beetle luciferase (CBR) | Natural mechanism of magneto-somes formation + genetic modification for red-emitting click beetle luciferase expression | Toxicity assay on microfluidic chip for the detection of toxicity effect on membrane by DMSO and TCDCA | [49] |
Microorganism | Culture Conditions (Synthesis Time) | Nanomaterial | Characteristics (Average Size, Morphology, etc.) | Biosynthetic Pathway | Application | Ref. |
---|---|---|---|---|---|---|
Saccharomyces cerevisiae | Aerobic two days growth in a modified Czapek’s medium, 5 °C; aliquot of cell suspension (OD600 = 0.6) + 3 mM CdCl2 + 0.8 mM Na2TeO3 + 1.5 mM CH3SO3H + 2.6 mM NaBH4, stirred at 500 rpm (N/A) | CdTe QDs | 2.0–3.6 nm; cubic zinc blende crystals | Extracellular synthesis not described | Good candidate for bio-imaging and bio-labelling applications | [50] |
Aspergillus welwitschiae KY766958 | Growth in Czapek’s medium; pH 7.3 ± 0.2, 30 °C for 7 days shaken at 150 rpm + 2 mmol K2TeO3 (48 h) | Te NPs | 60.80 nm; oval to spherical shape | Mechanism not described | Antibacterial activity against E. coli and methicillin resistant Staphylococcus aureus (MRSA) | [59] |
Commercially available instant dry yeast (Angel Yeast Co.—Yichang, China) | Sucrose solution (5 g/L) + instant dry yeast (600 mg), 30 °C for 24 h; cells pellet in sterile water (106 cells/mL) + AgNO3 solution + HAuCl4 solution (final concentrations N/A), 30 °C. (24 h) | Au–Ag alloy NPs | Reduced metallic form (XPS analysis); large superficial area and desirable conductivity (electrochemical impedance spectroscopy) | Extracellular synthesis not described | Electrochemical sensor for paracetamol | [51] |
Au–Ag alloy NPs | 9–25 nm | Extracellular synthesis not described | Electrochemical sensor for vanillin | [52] | ||
Humicola sp. | MGYP medium, pH 9, shaken at 200 rpm, 50 °C; harvested mycelial mass + 1 mM AgNO3, shaken at 200 rpm, 50 °C (96 h) | Ag NPs | 5–25 nm; spherical shape; face centered cubic crystals | Extracellular synthesis through a possible involvement of biomolecules secreted by the fungus | In vitro cytotoxicity against NIH3T3 mouse embryonic fibroblast cell line and MDA-MB-231 human breast carcinoma cell line | [55] |
Fusarium oxysporum f. sp. lycopersici | 5 days growth, potato dextrose broth, 28 °C; filtered biomass + 1 mM AgNO3, 28 °C, dark condition (120 h) | Ag NPs | 5 to 13 nm; spherical shape; face centered cubic crystals | Extracellular synthesis, possible involvement of a secreted reductase | Antibacterial activity against pathogenic bacteria Escherichia coli and Staphylococcus aureus; antitumoral activity against human breast carcinoma cell line MCF-7 | [56] |
Penicillium brevicompactum KCCM 60390 | 72 h growth, potato dextrose broth, 30 °C, shaken at 200 rpm; filtered biomass (5 g) in Milli-Q sterile deionized water and agitated, 72 h at 200 rpm, 30 °C; supernatant from filtered biomass + 1 mM HAuCl4, shaken at 200 rpm, dark condition 30 °C (N/A) | Au NPs | (live cell filtrate) 25–60 nm; spherical shape; 20–80 nm (potato dextrose broth), spherical and triangular and hexagonal shape (culture supernatant broth) 20 to 50 nm; well dispersed and uniform in shape and size; good stability against aggregation after 3 months | Extracellular synthesis; possible ion trapping on the fungal cells surface via electrostatic interaction; possible involvement of organic reagents used for the microbial cultivations as potential reducing agents | Inhibitory effect and cytotoxicity against mouse cancer C2C12 cell lines | [58] |
Trichoderma harzianum (SKCGW008) | 72 h cultured spores in wheat bran broth media, 28 °C shaken at 180 rpm; supernatant + 0.5% (w/v) of low molecular weight chitosan in agitation (30 min) | Chitosan NPs | 90.8 nm; spherical shape; amorphous structure | Extracellular synthesis via enzyme secreted (not identified) | Antioxidant activity; bactericidal activity against Staphylococcus aureus and Salmonella enterica; biocompatibility (no cytotoxic effect on murine fibroblast NIH-3T3 cells) | [57] |
Aspergillus flavus | Growth in potato dextrose broth, 28 °C, 115 rpm; harvested fungal biomass + 3 mM ZnSO4, 27 °C, 200 rpm; for ZnS:Gd nanoparticle 0.3 M Gd(NO3)3 (96 h) | ZnS and ZnS: Gd NPs | Nanocrystalline and a narrow size distribution: 12–24 nm spherical (ZnS): for and 10–18 nm (ZnS:Gd) | Extracellular synthesis not described | Optical detection of Pb (II), Cd (II), Hg (II), Cu (II), and Ni (II) in water | [60] |
Aspergillus flavus | Growth in potato dextrose broth + 0.5 mM Pb(CH3COO)2 + 6.4 mM Na2S, 30 °C, 115 rpm (120 h) | PbS NPs | 35–100 nm; cubic crystal | Extracellular synthesis not described | Optical detection of As (III) in water | [61] |
Microorganism | Culture Conditions (Synthesis Time) | Nanomaterial | Characteristics (Average Size, Morphology, Modification) | Biosynthetic Pathway | Application | Ref. |
---|---|---|---|---|---|---|
Tetraselmis kochinensis | Guillard’s Marine Enrichment medium at 28 °C, 200 rpm, 15 days, light condition. 10 g of washed harvested cells + 1 mM HAuCl4, 200 rpm, 28–29 °C (48 h) | Au NPs | 5–35 nm; spherical and triangular shape | Intracellular synthesis; possible reduction via enzymes present in the cell wall and in the cytoplasmic membrane | Various applications including catalysis, electronics and coatings | [63] |
Scenedesmus sp. (IMMTCC-25) | Growth in Modified Bold Basal medium, 28 ± 2 °C, 16:8 h light: dark cycle,126 rpm; washed pelleted biomass (harvested in the logarithmic growth phase) + 5 mM AgNO3, 28 °C in the same growth conditions (72 h) | Ag NPs | (living cells) 3–35 nm; spherical shape, highly crystalline cluster; (raw algal extract) (5–10 nm), spherical shape; (boiled algal extract) >50 nm; less stable; colloidal stability >3 months (assessed UV-Vis measures at 420 nm) | Intracellular synthesis not described. Extracellular synthesis (raw algal extracts); reducing and stabilizing agents involved in nucleation points and size control | Good antimicrobial activity against Streptococcus mutans and Escherichia coli (boiled cell extract) | [64] |
Desmodesmus sp. (KR 261937) | Growth in BG-11 medium for 15–20 days, 12:12 h light: dark cycle, 28 ± 2 °C, 120 rpm; centrifuged harvested biomass + 5 mM AgNO3, 28 °C in the same growth condition (72 h) | Ag NPs | (whole cells); 10–30 nm; ζ-potential = −20.2 mV; (raw algal extract) 4–8 nm; ζ-potential = −19.9 mV; (boiled algal extract) 3–6 nm; ζ-potential = −14.2 mV | Intracellular synthesis not described Extracellular synthesis: biocomponents (e.g., polysaccharides, proteins, polyphenols and phenolic compounds) possibly involved in control of dimension and stabilization | Antibacterial effect against Salmonella sp. and Listeria monocytogenes; antifungal activity against Candida parapsilosis | [65] |
Coscinodiscus concinnus Wm. | One-week growth (cell density 106 cells mL−1) in silicate-enriched seawater media, 18–20 °C, 12:12 h light: dark cycle | Biogenic silica (frustules) modified with murine monoclonal antibody UN1 | Green photoluminescence (peaked between 520 and 560 nm) of silanized frustules | Natural silicification process (bio-mineralization) | Using the biogenic silica photo-luminescence for immunosensors development | [72] |
Cyclotella sp. | Growth in Harrison’s Artificial Seawater Medium enriched with f/2 nutrients + 0.7 mM Na2SiO3, 22 °C 14:10 h light: dark cycle. The cell suspension was subcultured at 10% v/v every 14 days (336 h) | Biogenic silica (frustules) functionalized with IgG | ~200-nm (perimetrical pores) ~100-nm (linear arrays of pores from the center to the rim) at the base of each ~100-nm pore, a thin layer of silica containing four to five nanopores of ~20-nm diameter | Natural silicification process (bio-mineralization) | Label-free photoluminescence-based immunosensor | [73] |
Coscinodiscus wailesii | Growth in F/2 seawater medium, 20 °C, continuous photoperiod | Functionalized biogenic silica (frustules) | 100–200 μm | Natural silicification process (bio-mineralization) | Electrochemical immunosensor for the detection of C-reactive protein and myelo-peroxidase in buffer and human serum samples | [75] |
Cosinodiscus argus and Nitzschia soratensis | Growth in F/2 medium, 20 °C, 12:12 h light: dark cycle. The culture media volume was doubled every week to keep high the diatom reproduction rate About 4000 cells/ml and about 5.5 × 105 cell/ml for C. argus and N. soratensis respectively); (about 1000 h) | Multi-layered package array of biogenic silica (frustules) functionalized with purified primary rabbit IgG | C. argus 80–100 μm uniformly distributed sub-micron elliptical holes (~170–300 nm) and nanopores (~90–100 nm); N. soratensis ~10–15 μm (long axis) and ~5μm (short axis) with nanopores (60–80 nm) | Natural silicification process (bio-mineralization) | Optical immunochip for fluorophore-labeled donkey anti-rabbit IgG detection | [76] |
Pseudostaurosira trainorii | Growth in F/2 medium + silica 7 mg mL−1, under aeration 12:12 h light: dark cycle | Biogenic silica (frustules) integrated with Au NPs functionalized with 5,5′-dithiobis (2-nitrobenzoic acid) + anti-interleukin-8 antibodies | 4–5 μm; 98% silica Perpendicular oriented rows of 4–5 pores (100–200 nm) decreasing in size towards the central axis; neighboring rows separated by ~450 nm; neighboring pores in a row separated by ~100 nm | Natural silicification process (bio-mineralization) | Surface-enhanced Raman scattering immunosensor for the detection of interleukin 8 in blood plasma | [77] |
Pinnularia sp. (UTEX #B679) | Growth in Harrison’s artificial seawater medium + 0.5 mM Na2SiO3, 22 °C, 14:10 h light: dark cycle for 21 days. (336 h) | Biogenic silica (frustules) functionalized with anti- 2,4,6-TNT single chain variable fragment derived from the monoclonal antibody 2G5B5 | Ellipsoidal shape with major axe ~20 μm minor axe ~6 μm; pores in rectangular array (~200 nm diameter) spaced 300–400 nm apart. 4–5 nanopores (~50 nm diameter) at the base of each pore | Natural silicification process (bio-mineralization) | Label-free photo-luminescence quenching -based sensor for 2,4,6-trinitro-toluene detection | [77] |
Aulacoseria sp. | N/A | Biogenic silica (frustules) coated with gold (multiple layers of Au particles) | 5–10 μm cylindrical-shaped frustules | Natural silicification process (bio-mineralization) | Functional support for surface-enhanced Raman scattering sensor | [78] |
Melosira preicelanica | N/A | biogenic silica (frustules) tailored with Au NPs | ~20 nm cylindrical-shaped frustules | Natural silicification process (bio-mineralization) | Detection of bovine serum albumin and mineral oil by surface-enhanced Raman spectroscopy | [79] |
Coscinodiscus concinnus | Same conditions reported in [70] | Biogenic silica (frustules) loaded with streptomycin | Homogeneous size distribution with a radius of 220 ± 15 µm | Natural silicification process (biomineralization | Drug delivery | [80] |
Thalassiosira weissflogii CCAP strain 1085/10 | Growth in silicate-enriched seawater media, 18–20 °C, 12:12 h light: dark cycle, final cell density 106 cells mL−1 (168 h) | Biogenic silica (frustules) | Mainly composed of separated valves, porosity and hierarchically ordered nanostructure; luminescent and nanostructured silica shells, combining the dye photoluminescence with the photonic silica nanostructure | Natural silicification process (bio-mineralization) | Loading and delivery of fluoro-quinolone ciprofloxacin | [81] |
Fossil diatoms | N/A | Biogenic silica (frustules) integrated with 50–60 nm gold nanoparticles | ~400 μm (width of the diatomite channels porous); disk-shaped; extremely high confinement of the analyte and increase the concentration of target molecules at the sensor surface; photonic crystals (substrate for surface-enhanced Raman scattering) with 50–60 nm Au NPs | N/A | On-chip chromatography-surface-enhanced Raman scattering -based microfluidic label-free device for cocaine detection in biological samples | [84] |
Fossil diatoms | N/A | Biogenic silica (frustules) integrated with 50–60 nm Au nanoparticles | 10 to 30 μm; dish-shaped with two-dimensional periodic pores; thickness of the diatomite layer on the glass ~20 μm, (one-third of that of a commercial Thin Layer Chromatography, chip) photonic crystals (substrate for surface-enhanced Raman scattering | N/A | On-chip chromatography-surface-enhanced Raman scattering -based microfluidic label-free device for histamine in salmon and tuna | [85] |
Amphora-46 | Growth in F/2 medium made with filter sterile brackish water (salinity 3%, pH 8.2), 30 °C, 16:8 h light: dark cycle, 130 rpm; Aqueous cell extract + 2 mM AgNO3, 35–40 °C (30 h) | polycrystalline Ag NPs | 20–25 nm | Extracellular synthesis; photosynthetic pigment fucoxanthin acts as a reducing agent | Antimicrobial activity against Escherichia coli, Bacillus stearothermophilus, and Streptococcus mutans | [86] |
Emiliania huxleyi strain CCMP371 | Growth in Artificial seawater (ASW) + f/2 nutrients (without added Si), 20 °C, 12:12 h light: dark cycle, 130 rpm. Cells were harvested at late exponential phase | Aptamer-modified coccolith electrodeposited on the screen-printed Au electrode | N/A | Natural calcification process (coccolitho-genesis) | Aptamer-based sandwich-type electrochemical biosensor for Vaspin (type 2 diabetes biomarker) | [88] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, G.; Zane, D.; Dragone, R. Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications. Nanomaterials 2020, 10, 11. https://doi.org/10.3390/nano10010011
Grasso G, Zane D, Dragone R. Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications. Nanomaterials. 2020; 10(1):11. https://doi.org/10.3390/nano10010011
Chicago/Turabian StyleGrasso, Gerardo, Daniela Zane, and Roberto Dragone. 2020. "Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications" Nanomaterials 10, no. 1: 11. https://doi.org/10.3390/nano10010011
APA StyleGrasso, G., Zane, D., & Dragone, R. (2020). Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications. Nanomaterials, 10(1), 11. https://doi.org/10.3390/nano10010011