Polypyrrole Chains Decorated on CoS Spheres: A Core-Shell Like Heterostructure for High-Performance Microwave Absorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of CoS Microspheres
2.3. Synthesis of CoS@PPy Microspheres
2.4. Material Measurement
3. Results and Discussion
3.1. Characterization of Samples
3.2. Electromagnetic Parameters and Absorption Property
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yan, D.X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.G.; Wang, J.H.; Li, Z.M. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 2015, 25, 559–566. [Google Scholar] [CrossRef]
- Costa, F.; Monorchio, A.; Manara, G. Analysis and Design of Ultra Thin Electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, 98–120. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Cao, M.S.; Hou, Z.L.; Song, W.L.; Zhang, L.; Lu, M.M.; Jin, H.B.; Fang, X.Y.; Wang, W.Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhang, T.F.; Chang, H.C.; Xiao, P.S.; Chen, H.H.; Huang, Z.Y.; Chen, Y.S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100. [Google Scholar] [CrossRef]
- He, J.Z.; Wang, X.X.; Zhang, Y.L.; Cao, M.S. Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J. Mater. Chem. C 2016, 4, 7130–7140. [Google Scholar] [CrossRef]
- Peng, J.H.; Peng, Z.W.; Zhu, Z.P.; Augustine, R.; Mahmoud, M.M.; Tang, H.M.; Rao, M.J.; Zhang, Y.B.; Li, G.H.; Jiang, T. Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave-assisted polyol method. Ceram. Int. 2018, 44, 21015–21026. [Google Scholar] [CrossRef]
- Sun, G.B.; Dong, B.X.; Cao, M.H.; Wei, B.Q.; Hu, C.W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587–1593. [Google Scholar] [CrossRef]
- Wen, B.; Cao, M.S.; Lu, M.M.; Cao, W.Q.; Shi, H.L.; Liu, J.; Wang, X.X.; Jin, H.B.; Fang, X.Y.; Wang, W.Z.; et al. Reduced Graphene Oxides: Light-Weight and High-Efficiency Electromagnetic Interference Shielding at Elevated Temperatures. Adv. Mater. 2014, 26, 3484–3489. [Google Scholar] [CrossRef] [PubMed]
- Thomassin, J.M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Rep. 2013, 74, 211–232. [Google Scholar] [CrossRef]
- Justin, P.; Rao, G.R. CoS spheres for high-rate electrochemical capacitive energy storage application. Int. J. Hydrog. Energy 2010, 35, 9709–9715. [Google Scholar] [CrossRef]
- Liu, K.L.; Wei, A.X.; Zhang, W.W.; Xiao, Z.M.; Zhao, Y.; Liu, J. Synthesis of vertically aligned CoS prismatic nanorods as counter electrodes for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 2018, 30, 1541–1546. [Google Scholar] [CrossRef]
- Guidotti, R.; Reinhardt, F.; Dai, J.; Reisner, D. Performance of thermal cells and batteries made with plasma-sprayed cathodes and anodes. J. Power Sources 2006, 160, 1456–1464. [Google Scholar] [CrossRef]
- Das, S.; Sudhagar, P.; Nagarajan, S.; Ito, E.; Lee, S.Y.; Kang, Y.S.; Choi, W. Synthesis of graphene-CoS electro-catalytic electrodes for dye sensitized solar cells. Carbon 2012, 50, 4815–4821. [Google Scholar] [CrossRef]
- Mujtaba, J.; Sun, H.Y.; Huang, G.Y.; Zhao, Y.Y.; Arandiyan, H.; Sun, G.X.; Xu, S.M.; Zhu, J. Co9S8 nanoparticles encapsulated in nitrogen-doped mesoporous carbon networks with improved lithium storage properties. RSC Adv. 2016, 6, 31775–31781. [Google Scholar] [CrossRef]
- Huang, T.Y.; Pan, W.L.; Tong, Y.; He, M.; Zhou, Y.M.; Li, S.W.; Ding, B.B.; Huang, S.; Tong, Y. Solvothermal synthesis of flower-like CoS hollow microspheres with excellent microwave absorption properties. RSC Adv. 2016, 6, 100392–100400. [Google Scholar] [CrossRef]
- Wang, Q.H.; Jiao, L.F.; Du, H.M.; Peng, W.X.; Han, Y.; Song, D.W.; Si, Y.C.; Wang, Y.J.; Yuan, H.T. Novel flower-like CoS hierarchitectures: One-pot synthesis and electrochemical properties. J. Mater. Chem. 2011, 21, 327–329. [Google Scholar] [CrossRef]
- Song, Y.; Wang, H.; Yu, W.S.; Wang, J.X.; Liu, G.X.; Li, D.; Wang, T.T.; Yang, Y.; Dong, X.T.; Ma, Q.L. Synergistic stabilizing lithium sulfur battery via nanocoating polypyrrole on cobalt sulfide nanobox. J. Power Sources 2018, 405, 51–60. [Google Scholar] [CrossRef]
- Liu, B.; Wei, S.; Xing, Y.; Liu, D.; Shi, Z.; Liu, X.C.; Sun, X.J.; Hou, S.Y.; Su, Z.M. Complex-surfactant-assisted hydrothermal synthesis and properties of hierarchical worm-like cobalt sulfide microtubes assembled by hexagonal nanoplates. Chem. Eur. J. 2010, 16, 6625–6631. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Hao, C.C.; He, L.H.; Yang, C.; Chen, Y.B.; Jiang, C.B.; Yu, R.H. Yolk–shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption. Nano Res. 2018, 11, 4169–4182. [Google Scholar] [CrossRef]
- Kim, B.; Lee, H.; Park, S.; Kim, H. Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films 2011, 519, 3492–3496. [Google Scholar] [CrossRef]
- Zhao, B.; Zhao, C.X.; Li, R.S.; Hamidinejad, S.M.; Park, C.B. Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interfaces 2017, 9, 20873–20884. [Google Scholar] [CrossRef]
- Guo, J.; Song, H.X.; Liu, H.; Luo, C.J.; Ren, Y.R.; Ding, T.; Khan, M.A.; Young, D.P.; Liu, X.Y.; Zhang, X.; et al. Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J. Mater. Chem. C 2017, 5, 5334–5344. [Google Scholar] [CrossRef]
- Dalal, J.; Lather, S.; Gupta, A.; Dahiya, S.; Maan, A.; Singh, K.; Dhawan, S.; Ohlan, A. EMI shielding properties of laminated graphene and PbTiO3 reinforced poly(3,4-ethylenedioxythiophene) nanocomposites. Compos. Sci. Technol. 2018, 165, 222–230. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, J.; Wang, G.S.; Zhang, H.Z.; Gao, H.J.; Shui, W.J. Enhanced wave absorption and mechanical properties of Cobalt Sulfide/PVDF composite materials. Sci. Rep. 2019, 9, 10488. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.B.; Huang, Y.; Zhang, X. Synthesis of graphene@branching-like polypyrrole@CoFe2O4 composites and their excellent electromagnetic wave absorption properties. Mater. Lett. 2014, 136, 298–301. [Google Scholar] [CrossRef]
- Wu, F.; Xie, A.; Sun, M.X.; Wang, Y.; Wang, M.Y. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 2015, 3, 14358–14369. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, M.X.; Jiang, W.C.; Wang, Y.; Wang, D.R.; Wu, F.; Xie, A.; Dong, W. A core-shell polypyrrole@silicon carbide nanowire (PPy@SiC) nanocomposite for the broadband elimination of electromagnetic pollution. RSC Adv. 2016, 6, 43056–43059. [Google Scholar] [CrossRef]
- Wang, H.C.; Ma, N.; Yan, Z.R.; Deng, L.; He, J.; Hou, Y.L.; Jiang, Y.; Yu, G.H. Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties. Nanoscale 2015, 7, 7189–7196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, X.L.; Cui, G.Z.; Sui, M.X.; Sun, X.D.; Yu, S.L. Direct growth of a polypyrrole aerogel on hollow CuS hierarchical microspheres yields particles with excellent electromagnetic wave properties. Polymers 2018, 10, 1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.S.; Liu, N.; An, Q.D.; Xiao, Z.Y.; Zhai, S.R.; Li, Z.C. Designed construction of Ti3C2Tx@PPY composites with enhanced microwave absorption performance. J. Alloys Compd. 2019, 802, 445–457. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, W.F.; Zhang, W.D.; Zheng, S.R.; Qi, S.H. Preparation of TiO2/Fe3O4/CF composites for enhanced microwave absorbing performance. J. Mater. Sci. Mater. Electron. 2018, 29, 7194–7202. [Google Scholar] [CrossRef]
- Yu, L.J.; Yu, L.M.; Dong, Y.B.; Zhu, Y.F.; Fu, Y.Q.; Ni, Q.Q. Compressible polypyrrole aerogel as a lightweight and wideband electromagnetic microwave absorber. J. Mater. Sci. Mater. Electron. 2019, 30, 5598–5608. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, X.L.; Chen, Y.W.; Zhang, P.; Sui, M.X.; Liu, H.; Sun, X.D. NiS2@MoS2 nanospheres anchored on reduced graphene oxide: a novel ternary heterostructure with enhanced electromagnetic absorption property. Nanomaterials 2019, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.B.; Yan, J.; Gao, X.G.; Huang, Y.; Zhang, Y.Q. Construction of layer-by-layer sandwiched graphene/polyaniline nanorods/carbon nanotubes heterostructures for high performance supercapacitors. Electrochim. Acta 2018, 272, 77–87. [Google Scholar] [CrossRef]
- Chen, J.Z.; Xu, J.L.; Zhou, S.; Zhao, N.; Wong, C.P. Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 2016, 21, 145–153. [Google Scholar] [CrossRef]
- Li, H.B.; Gao, Y.Q.; Wang, C.X.; Yang, G.W. A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv. Energy Mater. 2015, 5, 1401767. [Google Scholar] [CrossRef]
- Li, W.R.; Zhou, M.; Lu, F.; Liu, H.F.; Zhou, Y.X.; Zhu, J.; Zeng, X.H. Enhanced conductive loss in nickel–cobalt sulfide nanostructures for highly efficient microwave absorption and shielding. J. Phys. D Appl. Phys. 2018, 51, 235303. [Google Scholar] [CrossRef]
- Zhao, G.L.; Lv, H.P.; Zhou, Y.; Zheng, X.T.; Wu, C.; Xu, C. Self-assembled sandwich-like mxene-derived nanocomposites for enhanced electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2018, 10, 42925–42932. [Google Scholar] [CrossRef]
- Wang, X.W.; Yang, M.Y.; Yan, H.X.; Qi, S.H. The characterization and preparation of core-shell structure particles of carbon-sphere@NiFe2O4@PPy as microwave absorbing materials in X band. J. Mater. Sci. Mater. Electron. 2017, 28, 14988–14995. [Google Scholar] [CrossRef]
- Chiu, S.C.; Yu, H.C.; Li, Y.Y. High electromagnetic wave absorption performance of silicon carbide nanowires in the gigahertz range. J. Phys. Chem. C 2010, 114, 1947–1952. [Google Scholar] [CrossRef]
- Tian, C.H.; Du, Y.C.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J.L.; Ma, J.; Zhao, H.T.; Han, X.J. Constructing uniform core-shell PPy@PANI composites with tunable shell thickness toward enhancement in microwave absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090–20099. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Sahu, B.; Chandrasekhar, M.; Kumar, P.; Kaushik, S.; Rath, S.; Singh, A. Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics. Ceram. Int. 2016, 42, 12352–12360. [Google Scholar] [CrossRef] [Green Version]
- Ganpule, C.S.; Roytburd, A.L.; Nagarajan, V.; Hill, B.K.; Ogale, S.B.; Williams, E.D.; Ramesh, R.; Scott, J.F. Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films. Phys. Rev. B 2001, 65. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Jiao, Y.Z.; Li, J.J.; Xie, A.; Wu, F.; Zhang, K.; Dong, W.; Zhu, X.F. Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos. Sci. Technol. 2019, 174, 232–240. [Google Scholar] [CrossRef]
- He, Z.D.; Liu, M.M.; Liu, L.; Tong, G.X.; Wu, W.; Wang, X.J. Distinct plasmon resonance enhanced microwave absorption of strawberry-like Co/C/Fe/C core-shell hierarchical flowers via engineering the diameter and interparticle spacing of Fe/C nanoparticles. RSC Adv. 2019, 9, 22644–22655. [Google Scholar] [CrossRef] [Green Version]
- Wanger, K.W. The after-effect in dielectrics. Arch. Elektrotech. 1914, 2, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Kuriakose, M.; Longuemart, S.; Depriester, M.; Delenclos, S.; Sahraoui, A.H. Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Phys. Rev. E 2014, 89. [Google Scholar] [CrossRef] [PubMed]
- Correia, N.T.; Ramos, J.J.M. On the cooperativity of the β-relaxation: A discussion based on dielectric relaxation and thermally stimulated depolarisation currents data. Phys. Chem. Chem. Phys. 2000, 2, 5712–5715. [Google Scholar] [CrossRef]
- Wen, S.L.; Liu, Y.; Zhao, X.; Cheng, J.W.; Li, H. Synthesis, dual-nonlinear magnetic resonance and microwave absorption properties of nanosheet hierarchical cobalt particles. Phys. Chem. Chem. Phys. 2014, 16, 18333–18340. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Huang, H.; Dong, X.L.; Zhang, X.F.; Lei, J.P.; Sun, J.P.; Dong, C. Influence of alloy components on electromagnetic characteristics of core/shell-type Fe–Ni nanoparticles. J. Appl. Phys. 2008, 104. [Google Scholar] [CrossRef]
- Wen, F.S.; Zhang, F.; Liu, Z.Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J. Phys. Chem. C 2011, 115, 14025–14030. [Google Scholar] [CrossRef]
- Zhou, W.C.; Hu, X.J.; Bai, X.X.; Zhou, S.Y.; Sun, C.H.; Yan, J.; Chen, P. synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-Poly(3,4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 2011, 3, 3839–3845. [Google Scholar] [CrossRef] [PubMed]
- Abrashuly, A.; Valagiannopoulos, C. Limits for absorption and scattering by core-shell nanowires in the visible spectrum. Phys. Rev. Appl. 2019, 11. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Cui, G.; Li, L.; Zhang, Z.; Lv, X.; Wang, X. Polypyrrole Chains Decorated on CoS Spheres: A Core-Shell Like Heterostructure for High-Performance Microwave Absorption. Nanomaterials 2020, 10, 166. https://doi.org/10.3390/nano10010166
Liu H, Cui G, Li L, Zhang Z, Lv X, Wang X. Polypyrrole Chains Decorated on CoS Spheres: A Core-Shell Like Heterostructure for High-Performance Microwave Absorption. Nanomaterials. 2020; 10(1):166. https://doi.org/10.3390/nano10010166
Chicago/Turabian StyleLiu, Hui, Guangzhen Cui, Ling Li, Zhi Zhang, Xuliang Lv, and Xinxin Wang. 2020. "Polypyrrole Chains Decorated on CoS Spheres: A Core-Shell Like Heterostructure for High-Performance Microwave Absorption" Nanomaterials 10, no. 1: 166. https://doi.org/10.3390/nano10010166
APA StyleLiu, H., Cui, G., Li, L., Zhang, Z., Lv, X., & Wang, X. (2020). Polypyrrole Chains Decorated on CoS Spheres: A Core-Shell Like Heterostructure for High-Performance Microwave Absorption. Nanomaterials, 10(1), 166. https://doi.org/10.3390/nano10010166