Tunable Nonlinear Optical Property of MnS Nanoparticles with Different Size and Crystal Form
Abstract
:1. Introduction
2. Experiments
2.1. Synthesis of αMnS
2.2. Instrumental Characterization
3. Results and Discussion
3.1. Structure and Morphology Characterization
3.2. NLO Property of Nanoparticles
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sun, H.T.; Mei, L.; Liang, J.F.; Zhao, Z.P.; Lee, C.; Fei, H.L.; Ding, M.N.; Lau, J.; Li, M.F.; Wang, C.; et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279. [Google Scholar] [CrossRef]
- Li, D.; Mueller, M.B.; Gilje, S.; Kaner, R.B.; Wallace, G.G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101. [Google Scholar] [CrossRef]
- Li, L.L.; Liu, K.P.; Yang, G.H.; Wang, C.M.; Zhang, J.R.; Zhu, J.J. Fabrication of Graphene–Quantum Dots Composites for Sensitive Electrogenerated Chemiluminescence Immunosensing. Adv. Funct. Mater. 2011, 21, 869–878. [Google Scholar] [CrossRef]
- Kinloch, I.A.; Suhr, J.; Lou, J.; Young, R.J.; Ajayan, P.M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.C.; Geim, A.K.; Katsnelson, M.I. The structure of suspended graphene sheets. Nature 2007, 446, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, C.; Zhang, H.; Wang, R.; Hua, Z.; Wang, X.; Zhang, J.; Xiao, M. Broadband optical nonlinearity induced by charge-transfer excitons in type-II CdSe/ZnTe nanocrystals. Adv. Mater. 2013, 25, 4397–4402. [Google Scholar] [CrossRef] [PubMed]
- Norris, D.J.; Efros, A.L.; Erwin, S.C. Doped nanocrystals. Science 2008, 319, 1776–1779. [Google Scholar] [CrossRef] [PubMed]
- Teitelboim, A.; Oron, D. Broadband near-Infrared to visible upconversion in quantum dot-Quantum well heterostructures. ACS Nano 2016, 10, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Wawrzynczyk, D.; Szeremeta, J.; Samoc, M.; Nyk, M. Third-order nonlinear optical properties of infrared emitting PbS and PbSe Quantum Dots. J. Phys. Chem. C 2016, 120, 21939–21945. [Google Scholar] [CrossRef]
- Fang, X.Y.; Cui, L.F.; Pu, T.T.; Song, J.L.; Zhang, X.D. Core-shell CdS@MnS nanorods as highly efficient photocatalysts for visible light driven hydrogen evolution. Appl. Surf. Sci. 2018, 457, 863–869. [Google Scholar] [CrossRef]
- Li, X.F.; Zhou, K.X.; Zhou, J.Y.; Shen, J.F.; Ye, M.X. CuS nanoplatelets arrays grown on graphene nanosheets as advanced electrode materials for supercapacitor applications. J. Mater. Sci. Technol. 2018, 34, 2342–2349. [Google Scholar] [CrossRef]
- Jiang, Z.K.; Yu, J.M.; Song, X.Z.; Yang, W.J.; Fang, H.Y.; Sun, Y.; Sun, G.X.; Huang, T.Z. Reduced graphene oxide intercalated ZnS nanoparticles as an efficient and durable electrocatalyst for the oxygen reduction reaction. New J. Chem. 2018, 42, 19285–19293. [Google Scholar] [CrossRef]
- Li, Z.T.; Xu, R.F.; Deng, S.Z.; Su, X.; Wu, W.T.; Liu, S.P.; Wu, M.B. MnS decorated N/S codoped 3D graphene used as cathode for the lithium-sulfur battery. Appl. Surf. Sci. 2018, 433, 10–15. [Google Scholar] [CrossRef]
- Du, H.; Xu, G.Q.; Chin, W.S. Synthesis, characterization, and nonlinear optical properties of hybridized CdS-Polystyrene nanocomposites. Chem. Mater. 2002, 14, 4473–4479. [Google Scholar] [CrossRef]
- Mary, K.A.A.; Unnikrishnan, N.V.; Philip, R. Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots. APL Mater. 2014, 2, 76104. [Google Scholar] [CrossRef]
- Dehghani, Z.; Nazerdeylami, S.; Saievar-Iranizad, E.; Ara, M.M. Synthesis and investigation of nonlinear optical properties of semiconductor ZnS nanoparticles. J. Phys. Chem. Solid 2011, 72, 1008–1010. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhu, B.H.; Li, P.; Li, P.C.; Wang, G.X.; Gu, Y.Z. Synthesis and third-order nonlinear optical properties of α-MnS and α-MnS/rGO composites. Opt. Mater. 2019, 92, 156–162. [Google Scholar] [CrossRef]
- Wu, L.F.; Wang, Y.H.; Li, P.L.; Wu, X.; Shang, M.; Xiong, Z.Z.; Zhang, H.J.; Liang, F.; Xie, Y.F.; Wang, J. Enhanced nonlinear optical behavior of graphene-CuO nanocomposites investigated by Z-scan technique. J. Alloy. Compd. 2019, 777, 759–766. [Google Scholar] [CrossRef]
- Scott, R.; Achtstein, A.W.; Prudnikau, A.; Antanovich, A.; Christodoulou, S.; Moreels, I.; Artemyev, M.; Woggon, U. Two photon absorption in II-VI semiconductors: The influence of dimensionality and size. Nano Lett. 2015, 15, 4985–4992. [Google Scholar] [CrossRef]
- Gan, C.L.; Xiao, M.; Battaglia, D.; Pradhan, N.; Peng, X.G. Size dependence of nonlinear optical absorption and refraction of Mn-doped ZnSe nanocrystals. Appl. Phys. Lett. 2007, 91, 201103. [Google Scholar] [CrossRef] [Green Version]
- Shinojima, H.; Yumoto, J.; Uesugi, N. Size dependence of optical nonlinearity of CdSSe microcrystallites doped in glass. Appl. Phys. Lett. 1992, 60, 298. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Li, P.; Li, P.C.; Gu, Y.Z. Facile one-Step synthesis and enhanced optical nonlinearity of graphene-γMnS. Nanomaterials 2019, 9, 1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Yi, R.; Wang, Z.; Shi, R.; Wang, H.; Qiu, G.; Liu, X. Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries. Mater. Chem. Phys. 2008, 111, 13–16. [Google Scholar] [CrossRef]
- Sheik-bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Stryland, E.W.V. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.D.; Chen, H.; Lu, W.; Liu, M.L.; Li, I.L.; Zhang, M.; Zhang, W.F.; Wang, J.Z.; Xu, Z.H.; Yan, P.G.; et al. Large-area and highly crystalline MoSe2 for optical modulator. Nanotechnology 2017, 28, 484001. [Google Scholar] [CrossRef]
- Wang, Y. Nonlinear optical properties of nanometer-sized semiconductor clusters. Acc. Chem. Res. 1991, 24, 133–139. [Google Scholar] [CrossRef]
- Bányai, L.; Hu, Y.Z.; Lindberg, M.; Koch, S.W. Third-order optical nonlinearities in semiconductor microstructures. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 38, 8142–8153. [Google Scholar] [CrossRef]
- Takagahara, T. Biexciton states in semiconductor quantum dots and their nonlinear optical properties. Phys. Rev. B Condens. Matter Mater. Phys. 1989, 39, 10206–10231. [Google Scholar] [CrossRef]
- Anand, B.; Kaniyoor, A.; Sai, S.S.S.; Philip, R.; Ramaprabhu, S. Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids. J. Mater. Chem. C 2013, 1, 2773–2780. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Li, P.; Gu, Y. Tunable Nonlinear Optical Property of MnS Nanoparticles with Different Size and Crystal Form. Nanomaterials 2020, 10, 34. https://doi.org/10.3390/nano10010034
Zhang Z, Li P, Gu Y. Tunable Nonlinear Optical Property of MnS Nanoparticles with Different Size and Crystal Form. Nanomaterials. 2020; 10(1):34. https://doi.org/10.3390/nano10010034
Chicago/Turabian StyleZhang, Zhihao, Pengchao Li, and Yuzong Gu. 2020. "Tunable Nonlinear Optical Property of MnS Nanoparticles with Different Size and Crystal Form" Nanomaterials 10, no. 1: 34. https://doi.org/10.3390/nano10010034
APA StyleZhang, Z., Li, P., & Gu, Y. (2020). Tunable Nonlinear Optical Property of MnS Nanoparticles with Different Size and Crystal Form. Nanomaterials, 10(1), 34. https://doi.org/10.3390/nano10010034