Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition
Abstract
1. Introduction
2. Experimental Methods
2.1. Synthesis of MoSe2
2.2. Characterization of MoSe2
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2011, 6, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef]
- Pospischil, A.; Furchi, M.M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 2014, 9, 257–261. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Komsa, H.P.; Krasheninnikov, A.V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201. [Google Scholar] [CrossRef]
- Shaw, J.C.; Zhou, H.; Chen, Y.; Weiss, N.O.; Liu, Y.; Huang, Y.; Duan, X. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517. [Google Scholar] [CrossRef]
- Chang, Y.H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J.K.; Takenobu, T. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8. [Google Scholar] [CrossRef]
- Chen, H.; Xie, Y.; Cui, H.; Zhao, W.; Zhu, X.; Wang, Y.; Huang, F. In situ growth of a MoSe2/Mo counter electrode for high efficiency dye-sensitized solar cells. Chem. Commun. 2014, 50, 4475. [Google Scholar] [CrossRef]
- Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T.S.; Li, J.; Wu, J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, T.R.; Zhou, B.; Cui, Y.T.; Yan, H.; Liu, Z.; Lin, H. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y.; Zhong, M.; Huang, Y.; Wan, X.; Peng, J.; Weng, J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Res. 2015, 3, A79. [Google Scholar] [CrossRef]
- Yin, J.; Chen, H.; Lu, W.; Liu, M.; Li, I.L.; Zhang, M.; Liu, W. Large-area and highly crystalline MoSe2 for optical modulator. Nanotechnology 2017, 28. [Google Scholar] [CrossRef]
- Nie, Z.; Trovatello, C.; Pogna, E.A.; Dal Conte, S.; Miranda, P.B.; Kelleher, E.; Cerullo, G. Broadband nonlinear optical response of monolayer MoSe2 under ultrafast excitation. Appl. Phys. Lett. 2018, 112. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Z.; Duan, X.; Duan, X. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019. [Google Scholar] [CrossRef]
- Lee, Y.H.; Zhang, X.Q.; Zhang, W.; Chang, M.T.; Lin, C.T.; Chang, K.D.; Lin, T.W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320. [Google Scholar] [CrossRef]
- Wang, X.; Gong, Y.; Shi, G.; Chow, W.L.; Keyshar, K.; Ye, G.; Tay, B.K. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, H.; Choi, W.; Fei, W.; Lee, C.J. Large-area synthesis of monolayer MoSe2 films on SiO2/Si substrates by atmospheric pressure chemical vapor deposition. RSC Adv. 2017, 7, 27969–27973. [Google Scholar] [CrossRef]
- Chen, T.; Hao, G.; Wang, G.; Li, B.; Kou, L.; Hang, Y.; Zhong, J. Controlled growth of atomically thin MoSe2 films and nanoribbons by chemical vapor deposition. 2D Mater. 2019, 6. [Google Scholar] [CrossRef]
- Chen, T.; Ding, D.; Shi, J.; Wang, G.; Kou, L.; Zheng, X.; Hao, G. Lateral and vertical MoSe2–MoS2 heterostructures via epitaxial growth: Triggered by high-temperature annealing and precursor concentration. J. Phys. Chem. Lett. 2019, 10, 5027–5035. [Google Scholar] [CrossRef]
- Rhyee, J.S.; Kwon, J.; Dak, P.; Kim, J.H.; Kim, S.M.; Park, J.; Kim, S. High-mobility transistors based on large-area and highly crystalline CVD-grown MoSe2 films on insulating substrates. Adv. Mater. 2016, 28, 2316–2321. [Google Scholar] [CrossRef]
- Xia, J.; Huang, X.; Liu, L.Z.; Wang, M.; Wang, L.; Huang, B.; Meng, X.M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949–8955. [Google Scholar] [CrossRef]
- Baek, J.; Yin, D.; Liu, N.; Omkaram, I.; Jung, C.; Im, H.; Yoon, Y. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 2017, 10, 1861–1871. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, P.; Duan, X.; Zang, K.; Luo, J.; Duan, X. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792. [Google Scholar] [CrossRef]
- Zhang, X.; Nan, H.; Xiao, S.; Wan, X.; Gu, X.; Du, A.; Ostrikov, K.K. Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Cabrera, N.; Burton, W.K. Crystal growth and surface structure. Part II. Discuss. Faraday Soc. 1949, 5, 40–48. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Jiang, F.; Zhao, P.; Wang, H.; Zhang, Z.; Jin, C. Revealing the microscopic CVD growth mechanism of MoSe2 and the role of hydrogen gas during the growth procedure. Nanotechnology 2018, 29. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Yang, R.; Wang, Q.; Zheng, J.; Qiao, L.; Duan, J. Weakened interlayer coupling in two-dimensional MoSe2 flakes with screw dislocations. Nano Res. 2019, 12, 1900–1905. [Google Scholar] [CrossRef]
- Mitioglu, A.A.; Galkowski, K.; Surrente, A.; Klopotowski, L.; Dumcenco, D.; Kis, A.; Plochocka, P. Magnetoexcitons in large area CVD-grown monolayer MoS2 and MoSe2 on sapphire. Phys. Rev. B 2016, 93, 165412. [Google Scholar] [CrossRef]
- Hwang, Y.; Shin, N. Hydrogen-assisted step-edge nucleation of MoSe2 monolayers on sapphire substrates. Nanoscale 2019, 11, 7701–7709. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, B.; Nie, H.; Li, G.; Sun, X.; Wang, Y.; He, J. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale 2018, 10, 20171–20177. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt. Express 2014, 22, 7249–7260. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, G.; Yang, X.; Yang, H.; Zhu, M.; Zhang, S.; Peng, G.; Li, Z. Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition. Nanomaterials 2020, 10, 75. https://doi.org/10.3390/nano10010075
Wang S, Wang G, Yang X, Yang H, Zhu M, Zhang S, Peng G, Li Z. Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition. Nanomaterials. 2020; 10(1):75. https://doi.org/10.3390/nano10010075
Chicago/Turabian StyleWang, Siyuan, Guang Wang, Xi Yang, Hang Yang, Mengjian Zhu, Sen Zhang, Gang Peng, and Zheng Li. 2020. "Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition" Nanomaterials 10, no. 1: 75. https://doi.org/10.3390/nano10010075
APA StyleWang, S., Wang, G., Yang, X., Yang, H., Zhu, M., Zhang, S., Peng, G., & Li, Z. (2020). Synthesis of Monolayer MoSe2 with Controlled Nucleation via Reverse-Flow Chemical Vapor Deposition. Nanomaterials, 10(1), 75. https://doi.org/10.3390/nano10010075