Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbOx Films
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Deng, Y.; Huang, P.; Chen, B.; Yang, X.; Gao, B.; Wang, J.; Zeng, L.; Du, G.; Ekang, J.; Liu, X. RRAM Crossbar Array With Cell Selection Device: A Device and Circuit Interaction Study. IEEE Trans. Electron Devices 2012, 60, 719–726. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Pi, S.; Lin, P.; Xia, Q. Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nanoimprint lithography. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2013, 31, 06FA02. [Google Scholar] [CrossRef]
- Lee, M.-J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.-B.; Kim, C.-J.; Seo, D.H.; Seo, S. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 2011, 10, 625. [Google Scholar] [CrossRef]
- Pickett, M.D.; Williams, R.S. Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 2012, 23, 215202. [Google Scholar] [CrossRef]
- Torrezan, A.C.; Strachan, J.P.; Medeiros-Ribeiro, G.; Williams, R.S. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 2011, 22, 485203. [Google Scholar] [CrossRef]
- Lee, W.; Park, J.; Kim, S.; Woo, J.; Shin, J.; Choi, G.; Park, S.; Lee, D.; Cha, E.; Lee, B.H. High current density and nonlinearity combination of selection device based on TaOx/TiO2/TaOx structure for one selector—One resistor arrays. ACS Nano 2012, 6, 8166–8172. [Google Scholar] [CrossRef]
- Ahn, H.-W.; Jeong, D.S.; Cheong, B.-K.; Lee, H.; Lee, H.; Kim, S.-D.; Shin, S.-Y.; Kim, D.; Lee, S. Effect of density of localized states on the ovonic threshold switching characteristics of the amorphous GeSe films. Appl. Phys. Lett. 2013, 103, 42908. [Google Scholar] [CrossRef]
- Ji, L.; Chang, Y.-F.; Fowler, B.; Chen, Y.-C.; Tsai, T.-M.; Chang, K.-C.; Chen, M.-C.; Chang, T.-C.; Sze, S.M.; Yu, E.T. Integrated one diode—One resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. Nano Lett. 2013, 14, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Shenoy, R.S.; Burr, G.W.; Virwani, K.; Jackson, B.; Padilla, A.; Narayanan, P.; Rettner, C.; Shelby, R.M.; Bethune, D.S.; Raman, K.V.; et al. MIEC (mixed-ionic-electronic-conduction)-based access devices for non-volatile crossbar memory arrays. Semicond. Sci. Technol. 2014, 29, 104005. [Google Scholar] [CrossRef]
- Chudnovskii, F.; Odynets, L.; Pergament, A.; Stefanovich, G. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal—Insulator Transition in the Switching Mechanism. J. Solid State Chem. 1996, 122, 95–99. [Google Scholar] [CrossRef]
- Kim, S.; Liu, X.; Park, J.; Jung, S.; Lee, W.; Woo, J.; Shin, J.; Choi, G.; Cho, C.; Park, S. Ultrathin (<10 nm) Nb2O5/NbO2 hybrid memory with both memory and selector characteristics for high density 3D vertically stackable RRAM applications. In Proceedings of the 2012 IEEE Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; pp. 155–156. [Google Scholar]
- Mähne, H.; Wylezich, H.; Slesazeck, S.; Mikolajick, T.; Vesely, J.; Klemm, V.; Rafaja, D. Room temperature fabricated NbOx/Nb2O5 memory switching device with threshold switching effect. In Proceedings of the 5th IEEE International Memory Workshop, Monterey, CA, USA, 26–29 May 2013; pp. 174–177. [Google Scholar]
- Chen, L.; Sun, Q.-Q.; Gu, J.-J.; Xu, Y.; Ding, S.-J.; Zhang, D.W. Bipolar resistive switching characteristics of atomic layer deposited Nb2O5 thin films for nonvolatile memory application. Curr. Appl. Phys. 2011, 11, 849–852. [Google Scholar] [CrossRef]
- Cha, E.; Woo, J.; Lee, D.; Lee, S.; Song, J.; Koo, Y.; Lee, J.; Park, C.G.; Yang, M.Y.; Kamiya, K. Nanoscale (∼10 nm) 3D vertical ReRAM and NbO 2 threshold selector with TiN electrode. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 10.5.1–10.5.4. [Google Scholar]
- Jacob, K.T.; Shekhar, C.; Vinay, M.; Waseda, Y. Thermodynamic Properties of Niobium Oxides. J. Chem. Eng. Data 2010, 55, 4854–4863. [Google Scholar] [CrossRef]
- Liu, X.; Nandi, S.K.; Venkatachalam, D.K.; Belay, K.; Song, S.; Elliman, R.G. Reduced Threshold Current in NbO2 Selector by Engineering Device Structure. IEEE Electron Device Lett. 2014, 35, 1055–1057. [Google Scholar] [CrossRef]
- Pickett, M.D.; Medeiros-Ribeiro, G.; Williams, R.S. A scalable neuristor built with Mott memristors. Nat. Mater. 2012, 12, 114–117. [Google Scholar] [CrossRef]
- Son, M.; Lee, J.; Park, J.; Shin, J.; Choi, G.; Jung, S.; Lee, W.; Kim, S.; Park, S.; Hwang, H. Excellent Selector Characteristics of Nanoscale VO2 for High-Density Bipolar ReRAM Applications. IEEE Electron Device Lett. 2011, 32, 1579–1581. [Google Scholar] [CrossRef]
- Shin, S.H.; Halpern, T.; Raccah, P.M. High-speed high-current field switching of NbO2. J. Appl. Phys. 1977, 48, 3150. [Google Scholar] [CrossRef]
- Gibson, G.A.; Musunuru, S.; Zhang, J.; Vandenberghe, K.; Lee, J.; Hsieh, C.-C.; Jackson, W.; Jeon, Y.; Henze, D.; Li, Z.; et al. An accurate locally active memristor model for S-type negative differential resistance in NbOx. Appl. Phys. Lett. 2016, 108, 023505. [Google Scholar] [CrossRef] [Green Version]
- Slesazeck, S.; Mähne, H.; Wylezich, H.; Wachowiak, A.; Radhakrishnan, J.; Ascoli, A.; Tetzlaff, R.; Mikolajick, T. Physical model of threshold switching in NbO2 based memristors. RSC Adv. 2015, 5, 102318–102322. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Yu, S. Compact Modeling of RRAM Devices and Its Applications in 1T1R and 1S1R Array Design. IEEE Trans. Electron Devices 2015, 62, 4022–4028. [Google Scholar] [CrossRef]
- Chen, A.; Ma, G.; He, Y.; Chen, Q.; Liu, C.; Wang, H.; Chang, T.-C. Research on Temperature Effect in Insulator–Metal Transition Selector Based on NbOx Thin Films. IEEE Trans. Electron Devices 2018, 65, 5448–5452. [Google Scholar] [CrossRef]
- McKenna, K.P.; Shluger, A.; Iglesias, V.; Porti, M.; Nafria, M.; Lanza, M.; Bersuker, G. Grain boundary mediated leakage current in polycrystalline HfO2 films. Microelectron. Eng. 2011, 88, 1272–1275. [Google Scholar] [CrossRef]
- Kang, M.; Son, J. Off-state current reduction in NbO2-based selector device by using TiO2 tunneling barrier as an oxygen scavenger. Appl. Phys. Lett. 2016, 109, 202101. [Google Scholar] [CrossRef]
- Park, J.; Hadamek, T.; Posadas, A.B.; Cha, E.; Demkov, A.A.; Hwang, H. Multi-layered NiOy/NbOx/NiOy fast drift-free threshold switch with high I on/I off ratio for selector application. Sci. Rep. 2017, 7, 4068. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sadaf, S.M.; Park, S.; Kim, S.; Cha, E.; Lee, D.; Jung, G.-Y.; Hwang, H. Complementary Resistive Switching in Niobium Oxide-Based Resistive Memory Devices. IEEE Electron Device Lett. 2013, 34, 235–237. [Google Scholar] [CrossRef]
- Son, M.; Liu, X.; Sadaf, S.M.; Lee, D.; Park, S.; Lee, W.; Kim, S.; Park, J.; Shin, J.; Jung, S. Self-Selective Characteristics of Nanoscale VOx Devices for High-Density ReRAM Applications. IEEE Electron Device Lett. 2012, 33, 718–720. [Google Scholar] [CrossRef]
- Liu, X.; Sadaf, S.M.; Son, M.; Shin, J.; Park, J.; Lee, J.; Park, S.; Hwang, H. Diode-less bilayer oxide (WOx−NbOx) device for cross-point resistive memory applications. Nanotechnology 2011, 22, 475702. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.; Woo, J.; Cho, C.; Lee, W.; Shin, J.; Choi, G.; Park, S.; Lee, D.; Lee, B.H.; et al. Threshold-switching characteristics of a nanothin-NbO2-layer-based Pt/NbO2/Pt stack for use in cross-point-type resistive memories. Microelectron. Eng. 2013, 107, 33–36. [Google Scholar] [CrossRef]
- Zasadzinski, J.F.; Albee, B.; Bishnoi, S.; Cao, C.; Ciovati, G.; Cooley, L.; Ford, D.; Proslier, T. Raman Spectroscopy as a Probe of Surface Oxides and Hydrides on Niobium. In Proceedings of the SRF 2011, Chicago, IL, USA, 25–29 July 2011. [Google Scholar]
- Jehng, J.M.; Wachs, I.E. Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 1991, 3, 100–107. [Google Scholar] [CrossRef]
- Dash, J.K.; Chen, L.; Topka, M.R.; Dinolfo, P.H.; Zhang, L.H.; Kisslinger, K.; Lu, T.-M.; Wang, G.-C. A simple growth method for Nb2O5 films and their optical properties. RSC Adv. 2015, 5, 36129–36139. [Google Scholar] [CrossRef]
- Huang, B.X.; Wang, K.; Church, J.S.; Li, Y.-S. Characterization of oxides on niobium by raman and infrared spectroscopy. Electrochim. Acta 1999, 44, 2571–2577. [Google Scholar] [CrossRef]
- Liu, X.; Sadaf, S.M.; Son, M.; Park, J.; Shin, J.; Lee, W.; Seo, K.; Lee, D.; Hwang, H. Co-Occurrence of Threshold Switching and Memory Switching in Pt/NbOx/Pt Cells for Crosspoint Memory Applications. IEEE Electron Device Lett. 2011, 33, 236–238. [Google Scholar] [CrossRef]
- Park, J.; Cha, E.; Karpov, I.; Hwang, H. Dynamics of electroforming and electrically driven insulator-metal transition in NbOx selector. Appl. Phys. Lett. 2016, 108, 232101. [Google Scholar] [CrossRef]
- Kim, T.; Baek, G.; Yang, S.; Yang, J.Y.; Yoon, K.S.; Gil Kim, S.; Lee, J.Y.; Im, H.S.; Hong, J.-P. Exploring oxygen-affinity-controlled TaN electrodes for thermally advanced TaOx bipolar resistive switching. Sci. Rep. 2018, 8, 8532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barin, I. Thermochemical Data of Pure Substances; VCH Publishers, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Yang, J.J.; Miao, F.; Pickett, M.D.; A A Ohlberg, D.; Stewart, D.R.; Lau, C.N.; Williams, R.S. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 2009, 20, 215201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubaschewski, O.; Hopkins, B. Oxidation mechanisms of niobium, tantalum, molybdenum and tungsten. J. Less Common Met. 1960, 2, 172–180. [Google Scholar] [CrossRef]
- Lin, C.; Posadas, A.; Hadamek, T.; Demkov, A.A. Final-state effect on x-ray photoelectron spectrum of nominally d1 and n -doped d0 transition-metal oxides. Phys. Rev. B 2015, 92, 035110. [Google Scholar] [CrossRef] [Green Version]
- Gogurla, N.; Mondal, S.P.; Sinha, A.K.; Katiyar, A.K.; Banerjee, W.; Kundu, S.C.; Ray, S.K. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix. Nanotechnology 2013, 24, 345202. [Google Scholar] [CrossRef]
- Shukla, N.; Thathachary, A.V.; Agrawal, A.; Paik, H.; Aziz, A.; Schlom, D.G.; Gupta, S.K.; Engel-Herbert, R.; Datta, S. A steep-slope transistor based on abrupt electronic phase transition. Nat. Commun. 2015, 6, 7812. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, J.; Kim, H.; Rehman, S.; Khan, M.F.; Kim, D.-k. Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbOx Films. Nanomaterials 2020, 10, 2164. https://doi.org/10.3390/nano10112164
Aziz J, Kim H, Rehman S, Khan MF, Kim D-k. Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbOx Films. Nanomaterials. 2020; 10(11):2164. https://doi.org/10.3390/nano10112164
Chicago/Turabian StyleAziz, Jamal, Honggyun Kim, Shania Rehman, Muhammad Farooq Khan, and Deok-kee Kim. 2020. "Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbOx Films" Nanomaterials 10, no. 11: 2164. https://doi.org/10.3390/nano10112164
APA StyleAziz, J., Kim, H., Rehman, S., Khan, M. F., & Kim, D. -k. (2020). Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbOx Films. Nanomaterials, 10(11), 2164. https://doi.org/10.3390/nano10112164