Synthesis of Microporous Mo2C-W2C Binary Carbides by Thermal Decomposition of Molybdenum-Tungsten Blues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Molybdenum-Tungsten Blue Dispersion
2.2. Characterization of Molybdenum-Tungsten Blue Dispersion
2.3. Synthesis of Binary Carbides
2.4. Binary Carbide Characterization
3. Results
3.1. Molybdenum-Tungsten Blue Dispersion Properties
3.2. Synthesis of Binary Carbides
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Toth, L.E. Transition Metal Carbides and Nitrides; Academic Press: New York, NY, USA, 1971; p. 279. [Google Scholar]
- Chen, M.; Ma, Y.; Zhou, Y.; Liu, C.; Qin, Y.; Fang, Y.; Guan, G.; Li, X.; Zhang, Z.; Wang, T. Influence of Transition Metal on the Hydrogen Evolution Reaction over Nano-Molybdenum-Carbide Catalyst. Catalysts 2018, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chen, M.; Geng, H.; Dong, H.; Wu, P.; Li, X.; Guan, G.; Wang, T. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-Vacancies defect engineering for optimizing hydrogen evolution reaction activity. Adv. Funct. Mater. 2020, 30, 2000561–2000576. [Google Scholar] [CrossRef]
- Kitchin, J.R.; Nørskov, J.K.; Barteau, M.A.; Chen, J.G. Trends in the chemical properties of early transition metal carbide surfaces: A density functional study. Catal. Today 2005, 105, 66–73. [Google Scholar] [CrossRef]
- Frauwallner, M.-L.; López-Linares, F.; Lara-Romero, J.; Scott, C.E.; Ali, V.; Hernández, E.; Pereira-Almao, P. Toluene hydrogenation at low temperature using a molybdenum carbide catalyst. Appl. Catal. A Gen. 2011, 394, 62–70. [Google Scholar] [CrossRef]
- Claridge, J.B.; York, A.; Brungs, A.; Marquez-Alvarez, C.; Sloan, J.; Chi Tsang, S.; Green, M.L.H. New catalysts for the conversion of methane to synthesis gas: Molybdenum and tungsten carbide. J. Catal. 1998, 180, 85–100. [Google Scholar] [CrossRef]
- Lee, J.S.; Oyama, S.T.; Boudart, M. Molybdenum carbide catalysts: I. Synthesis of unsupported powders. J. Catal. 1987, 106, 125–133. [Google Scholar] [CrossRef]
- Giordano, C.; Yang, W.; Lindemann, A.; Crombez, R.; Texter, J. Waterborne WC nanodispersions. Colloids Surf. A 2011, 374, 84–87. [Google Scholar] [CrossRef]
- Mehdad, A.; Jentoft, R.E.; Jentoft, F.C. Passivation Agents and Conditions for Mo2C and W2C: Effect on Catalytic Activity for Toluene Hydrogenation. J. Catal. 2017, 347, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Iglesia, E.; Ribeiro, F.; Boudart, M. Synthesis, characterization, and catalytic properties of clean and oxygen-modified tungsten carbide. Catal. Today 1992, 15, 307–337. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Zhang, B.; Anbalgam, K.; Thomas, T.; Yang, M. Synthesis and application of nano-structured metal nitrides and carbides: A review. Prog. Solid State Chem. 2018, 50, 1–15. [Google Scholar] [CrossRef]
- Lamic, A.F.; Shin, C.H.; Djéga-Mariadassou, G.; Potvin, C. Characterization of New Bimetallic Oxycarbide (MoWC0.5O0.6) for Bifunctional Isomerization of n-Heptane. Catal. Lett. 2006, 107, 89–94. [Google Scholar] [CrossRef]
- Mehdad, A.; Jentoft, R.E.; Jentoft, F.C. Single-phase mixed molybdenum-niobium carbides: Synthesis, characterization and multifunctional catalytic behavior in toluene conversion. J. Catal. 2017, 351, 161–173. [Google Scholar] [CrossRef]
- Tran, C.; Han, Y.; Garcia-Perez, M.; Kaliaguine, S. Synergistic effect of Mo–W carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons. Catal. Sci. Technol. 2019, 9, 1387–1397. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Nguyen, T.V.; Lee, Y.J.; Safinski, T.; Adesina, A.A. Structural evolution of alumina supported Mo–W carbide nanoparticles synthesized by precipitation from homogeneous solution. Mater. Res. Bull. 2005, 40, 149–157. [Google Scholar] [CrossRef]
- Peng, X.; Ge, X.; Wang, H.; Liu, Z.; Fisher, A.; Wang, X. Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. Adv. Funct. Mater. 2015, 25, 1520–1526. [Google Scholar]
- Kislov, V.R.; Skudin, V.V.; Adamu, A. New bimetallic Mo2C–WC/Al2O3 membrane catalysts in the dry reforming of methane. Kinet. Catal. 2017, 58, 73–80. [Google Scholar] [CrossRef]
- Process for the Preparation of Molybdenum-Tungsten Carbides. U.S. Patent 4330332, 18 May 1982.
- Blanco, E.; Díaz de León, J.N.; García-Fierro, J.L.; Escalona, N. Study of supported bimetallic MoRe carbides catalysts for guaiacol conversion. Catal. Today 2020, in press. [Google Scholar] [CrossRef]
- El-Himri, A.; Núñez, P.; Sapiña, F.; Ibanez, R.; Beltran, A.; Martínez-Agudoc, J.-M. Synthesis of new molybdenum-tungsten, vanadium-tungsten and vanadium-molybdenum-tungsten oxynitrides from freeze-dried precursors. J. Solid State Chem. 2004, 177, 2423–2431. [Google Scholar] [CrossRef]
- Kushkhov, K.B.; Kardanov, A.L.; Adamokova, M.N. Electrochemical synthesis of binary molybdenum–tungsten carbides (Mo,W)2C from tungstate–molybdate–carbonate melts. Russ. Metall. (Met.) 2013, 2, 79–85. [Google Scholar] [CrossRef]
- Stepanova, L.I.; Bodrykh, T.I.; Branitskiy, G.A. Finely dispersed mixed oxides of tungsten and molybdenum: Synthesis, phase composition, granulometric characteristics. Khimicheskiye Probl. Sozdaniya Novykh Mater. Tekhnologiy 2008, 3, 53–68. [Google Scholar]
- Izhar, S.; Yoshida, M.; Nagai, M. Characterization of cobalt-tungsten and molybdenum-tungsten carbides an anode catalyst for PEFC. Electrochim. Acta 2009, 54, 1255–1262. [Google Scholar] [CrossRef]
- Galatsis, K.; Li, Y. MoO3, WO3 single and binary oxide prepared by sol-gel method for gas sensing applications. J. Sol-Gel Sci. Technol. 2003, 26, 1097–1101. [Google Scholar] [CrossRef]
- Bastos, L.; Monteiro, W.; Zacharias, M.; da Cruz, G.; Rodrigues, J.A. Preparation and characterization of Mo/W bimetallic carbides by using different synthesis methods. Catal. Lett. 2008, 120, 48–55. [Google Scholar] [CrossRef]
- Patel, M.; Subrahmanyam, J. Synthesis of nanocrystalline molybdenum carbide (Mo2C) by solution route. Mater. Res. Bull. 2008, 43, 2036–2041. [Google Scholar] [CrossRef]
- Mehdad, A.; Jentoft, R.E.; Jentoft, F.C. Single-phase mixed molybdenum-tungsten carbides: Synthesis, characterization and catalytic activity for toluene conversion. Catal. Today 2019, 323, 112–122. [Google Scholar] [CrossRef]
- Guil-López, R.; Nieto, E.; Botas, J.A.; Fierro, J.L.G. On the genesis of molybdenum carbide phases during reduction-carburization reactions. J. Solid State Chem. 2012, 190, 285–295. [Google Scholar] [CrossRef]
- Giordano, C.; Erpen, C.; Yao, W.; Antonietti, M. Synthesis of Mo and W carbide and nitride nanoparticles via a simple “urea glass” route. Nano Lett. 2008, 8, 4659–4663. [Google Scholar] [CrossRef]
- Giordano, C.; Erpen, C.; Yao, W.; Milke, B.; Antonietti, M. Metal Nitride and Metal Carbide Nanoparticles by a Soft Urea Pathway. Chem. Mater. 2009, 21, 5136–5144. [Google Scholar] [CrossRef]
- Giordano, C.; Antonietti, M. Synthesis of crystalline metal nitride and metal carbide nanostructures by sol-gel chemistry. Nano Today 2011, 6, 366–380. [Google Scholar] [CrossRef]
- Kirakosyan, H.V.; Nazaretyan, K.T.; Kirakosyan, K.G.; Tumanyan, M.E.; Aydinyan, S.V.; Kharatyan, S.L. Nanosize molybdenum carbide preparation by sol-gel combustion synthesis with subsequent fast heating. Chem. J. Armen. 2017, 70, 11–19. [Google Scholar]
- Li, P.; Liu, Z.; Cui, L.; Zhai, F.; Wan, Q.; Li, Z.; Fang, Z.Z.; Volinsky, A.A.; Qu, X. Tungsten carbide synthesized by low-temperature combustion as gas diffusion electrode catalyst. Int. J. Hydrog. Chem. 2014, 39, 10911–10920. [Google Scholar] [CrossRef]
- Gavrilova, N.; Dyakonov, V.; Myachina, M.; Nazarov, V.; Skudin, V. Synthesis of Mo2C by Thermal Decomposition of Molybdenum Blue Nanoparticles. Nanomaterials 2020, 10, 2053. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova, N.N.; Nazarov, V.V.; Skudin, V.V. Synthesis of Membrane Catalysts Based on Mo2C. Kinet. Catal. 2015, 56, 670–680. [Google Scholar] [CrossRef]
- Bazhenova, M.D.; Gavrilova, N.N.; Krzhanovskiy, A.S.; Nazarov, V.V.; Skudin, V.V.; Vityaz, P.A.; Sudnik, L.V. Synthesis and some properties of molybdenum carbide obtained on the base of molybdenum blue. Chim. Promyshlennost Segodnya 2014, 1, 4–10. [Google Scholar]
- Zheng, Z.; Yuan, Z.; Li, S.; Li, H. Big to small: Ultrafine Mo2C particles derived from giant polyoxomolybdate clusters for hydrogen evolution reaction. Small 2019, 15, 1900358. [Google Scholar]
- Müller, A.; Roy, S. En route from the mystery of molybdenum blue via related manipulatable building 523 blocks to aspects of materials science. Coord. Chem. Rev. 2003, 245, 153–166. [Google Scholar] [CrossRef]
- Nakamura, I.; Miras, H. Investigating the formation of “Molybdenum Blues” with gel electrophoresis and 525 mass spectrometry. J. Am. Chem. Soc. 2015, 137, 6524–6530. [Google Scholar] [CrossRef]
- Botar, B.; Ellern, A.; Kögerler, P. Mapping the formation areas of giant molybdenum blue clusters: A spectroscopic study. Dalton Trans. 2012, 41, 8951–8959. [Google Scholar] [CrossRef] [Green Version]
- Tytko, K.; Glemser, O. Isopolymolybdates and isopolytungstates. Adv. Inorg. Chem. Radiochem. 1976, 19, 239–315. [Google Scholar]
- Gavrilova, N.; Myachina, M.; Harlamova, D.; Nazarov, V. Synthesis of Molybdenum Blue Dispersions Using Ascorbic Acid as Reducing Agent. Colloids Interfaces. 2020, 4, 24. [Google Scholar] [CrossRef]
- Albert, H.J.; Norton, J.T. Isothermschnitte in den Systemen Molybdän–Wolfram–Kohlenstoff und Molybdän–Titan–Kohlenstoff. Planseeber. Pulver Metal. 1956, 4, 2–6. [Google Scholar]
- Savyak, M.P.; Uvarova, I.V.; Skorokhod, V.V.; Konchalovskaya, L.D. Production of dispersed complex carbides. In Physical Chemistry of Dispersed Powders; IPM AN USSR: Kiev, Russia, 1984; pp. 14–19. [Google Scholar]
Molar Ratio [Mo]/[W] | Parameters | |||||
---|---|---|---|---|---|---|
Surface Area (BET), m2/g | Total Pore Volume, cm3/g | Mesopore Volume, cm3/g (BJH Desorption) | Micropore Volume, cm3/g (t-Plot) | Mesopore Diameter, nm (BJH) | Micropore Diameter, nm (Horvath-Kawazoe) | |
100 | 3.2 | 0.010 | 0.006 | 0.002 | 4 | |
95/5 | 150 | 0.073 | 0.005 | 0.68 | 4 | 1.2 |
90/10 | 141 | 0.068 | 0.002 | 0.064 | 4 | 1.2 |
80/20 | 120 | 0.058 | 0.002 | 0.055 | 4 | 1.2 |
50/50 | 1.4 | 0.002 | 0.002 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilova, N.; Myachina, M.; Dyakonov, V.; Nazarov, V.; Skudin, V. Synthesis of Microporous Mo2C-W2C Binary Carbides by Thermal Decomposition of Molybdenum-Tungsten Blues. Nanomaterials 2020, 10, 2428. https://doi.org/10.3390/nano10122428
Gavrilova N, Myachina M, Dyakonov V, Nazarov V, Skudin V. Synthesis of Microporous Mo2C-W2C Binary Carbides by Thermal Decomposition of Molybdenum-Tungsten Blues. Nanomaterials. 2020; 10(12):2428. https://doi.org/10.3390/nano10122428
Chicago/Turabian StyleGavrilova, Natalia, Maria Myachina, Victor Dyakonov, Victor Nazarov, and Valery Skudin. 2020. "Synthesis of Microporous Mo2C-W2C Binary Carbides by Thermal Decomposition of Molybdenum-Tungsten Blues" Nanomaterials 10, no. 12: 2428. https://doi.org/10.3390/nano10122428
APA StyleGavrilova, N., Myachina, M., Dyakonov, V., Nazarov, V., & Skudin, V. (2020). Synthesis of Microporous Mo2C-W2C Binary Carbides by Thermal Decomposition of Molybdenum-Tungsten Blues. Nanomaterials, 10(12), 2428. https://doi.org/10.3390/nano10122428