A New Approach to UV Protection by Direct Surface Functionalization of TiO2 with the Antioxidant Polyphenol Dihydroxyphenyl Benzimidazole Carboxylic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Titanium Dioxide (TiO2)
2.3. Titanium Dioxide (TiO2) Functionalization
2.4. Evaluation of Stability of Oxisol-TiO2 Particles
2.5. Sedimentation Rate
2.6. Photocatalysis
2.7. Formulations
- a.
- Formulations without Oxisol: powder of phase B was added to coco-caprylate, then strongly mixed until a homogeneous dispersion was obtained. Under continuous mixing, dispersion was gradually added to base formulation, the mixing goes on until a homogenous emulsion was obtained. Finally, the remaining water was added to system and homogenized.
- b.
- Formulation containing Oxisol alone or as mixture: powder of phase B was mixed with coco-caprylate as reported in point a. In a separate beaker, Oxisol was solubilized in water through quenching with NaOH. Under continuous mixing, the dispersion of powder was added to base formulation, then the Oxisol solution was added too.
2.8. Characterization
2.8.1. FT-IR Analysis
2.8.2. TGA and DSC
2.8.3. ζ Potential (DLS-ELS)
2.9. Cytotoxicity
2.10. Rheological Measurements of the Emulsions
2.11. Oxisol Released from the Emulsions
2.12. Photochemiluminescence PCL
2.13. In Vitro Evaluation of Filtering Parameters
3. Results and Discussion
3.1. Adduct Characterization (FT-IR)
3.2. Thermogravimetric Analysis (TGA)
3.3. Colloidal Characterization (CSA, DLS-ELS, ζ)
3.4. Efficiency Test
3.4.1. SPF
3.4.2. Photochemiluminescence PCL
3.5. Release Test
3.6. Safety Test
3.6.1. Photocatalysis
3.6.2. Cytotoxicity
4. Conclusions
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Norval, M.; Cullen, A.P.; de Gruijl, F.R.; Longstreth, J.; Takizawa, Y.; Lucas, R.M.; Noonan, F.P.; van der Leun, J.C. The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem. Photobiol. Sci. 2007, 6, 232–251. [Google Scholar] [CrossRef]
- Lehmann, P. Sun exposed skin disease. Clin. Dermatol. 2011, 29, 180–188. [Google Scholar] [CrossRef]
- Sambandan, D.R.; Ratner, D. Sunscreens: An overview and update. J. Am. Acad. Dermatol. 2011, 64, 748–758. [Google Scholar] [CrossRef]
- Curtis, C.; Shyr, T.; Ou-Yang, H. Metal oxide sunscreens protect skin by absorption, not by reflection or scattering. Photodermatol. Photoimmunol. Photomed. 2016, 32, 5–10. [Google Scholar]
- Sayre, R.; Kollias, N.; Roberts, R.; Baqer, A. Physical sunscreens. J. Soc. Cosmet. Chem. 1990, 43, 101–109. [Google Scholar]
- Teixeira, M.A.C.; Piccirillo, C.; Tobaldi, D.M.; Pullar, R.C.; Labrincha, J.A.; Ferreira, M.O.; Castro, P.M.L.; Pintado, M.M.E. Effect of preparation and processing conditions on UV absorbing properties of hydroxyapatite-Fe2O3 sunscreen. Mater. Sci. Eng. C 2017, 71, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Lautenschlager, S.; Wulf, H.C.; Pittelkow, M.R. Photoprotection. Lancet 2007, 370, 528–537. [Google Scholar] [CrossRef]
- Suppa, M.; Argenziano, G.; Moscarella, E.; Hofmann-Wellenhof, R.; Thomas, L.; Catricalà, C.; Gutiérrez-González, E.; Fargnoli, M.C.; Peris, K.; Zalaudek, I. Selective sunscreen application on nevi: Frequency and determinants of a wrong sun-protective behaviour. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Manasfi, T.; Coulomb, B.; Ravier, S.; Boudenne, J.L. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation. Environ. Sci. Technol. 2017, 51, 13580–13591. [Google Scholar] [CrossRef] [Green Version]
- Rodil, R.; Moeder, M.; Altenburger, R.; Schmitt-Jansen, M. Photostability and phytotoxicity of selected sunscreen agents and their degradation mixtures in water. Anal. Bioanal. Chem. 2009, 395, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, C.; Schwack, W. Reactivity of cosmetic UV filters towards skin proteins: Model studies with Boc-lysine, Boc-Gly-Phe-Gly-Lys-OH, BSA and gelatin. Int. J. Cosmet. Sci. 2014, 36, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, I.; Persson, E.; Mårtensson, J.; Börje, A. Investigation of the sunscreen octocrylene’s interaction with amino acid analogs in the presence of UV radiation. Photochem. Photobiol. 2012, 88, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, G.P. Inorganic sunscreens. Radiat. Prot. Dosimetry 2000, 91, 271–273. [Google Scholar] [CrossRef]
- SCCS (Scientific Committee on Consumer Safety), Opinion on Tianium Dioxide (nano form), 22 July 2013. Available online: http://cosmesispedia.info/wp-content/uploads/2013/06/sccs-TiO2nano.pdf (accessed on 25 January 2020).
- Girigoswami, K.; Viswanathan, M.; Murugesan, R.; Girigoswami, A. Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity. Mater. Sci. Eng. C 2015, 56, 501–510. [Google Scholar] [CrossRef]
- Bino, A.; Baldisserotto, A.; Scalambra, E.; Dissette, V.; Vedaldi, D.E.; Salvador, A.; Durini, E.; Manfredini, S.; Vertuani, S. Design, synthesis and biological evaluation of novel hydroxy-phenyl-1H-benzimidazoles as radical scavengers and UV-protective agents. J. Enzyme Inhib. Med. Chem. 2017, 32, 527–537. [Google Scholar] [CrossRef]
- Kőrösi, L.; Dömötör, D.; Beke, S.; Prato, M.; Scarpellini, A.; Meczker, K.; Schneider, G.; Kovács, T.; Kovács, Á.; Papp, S. Antibacterial Activity of Nanocrystalline TiO2(B) on Multiresistant Klebsiella pneumoniae Strains. Sci. Adv. Mater. 2013, 5, 1184–1192. [Google Scholar]
- Tanemura, S.; Miao, L.; Wunderlich, W.; Tanemura, M.; Mori, Y.; Toh, S.; Kaneko, K. Fabrication and characterization of anatase/rutile–TiO2 thin films by magnetron sputtering: A review. Sci. Technol. Adv. Mater. 2004, 6, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Gasparro, F.P.; Mitchnick, M.; Nash, J.F. A review of sunscreen and efficacy. Photochem. Photobiol. 1998, 68, 243–256. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, N.; Hayashi, T. Preparation of TiO2 nanoparticles surface-modified by both carboxylic acid and amine: Dispersibility and stabilization in organic solvents. Colloid. Surf. A-Physicochem. Eng. Asp. 2008, 317, 543–550. [Google Scholar] [CrossRef]
- Detloff, T.; Sobisch, T.; Lerche, D. Particle size distribution by space or time dependent extinction profiles obtained by analytical centrifugation (concentrated systems). Powder Technol. 2007, 174, 50–55. [Google Scholar] [CrossRef]
- Schmidt-Ott, A.; van den Berg, K.J.; Dik, J.; Kooyman, P.J.; van Driel, B.A. A quick assessment of the photocatalytic activity of TiO2 pigments—From lab to conservation studio! Microchem. J. 2015, 126, 162–171. [Google Scholar]
- Bukallah, S.B.; Rauf, M.A.; Ashraf, S.S. Photocatalytic decoloration of Coomassie Brilliant Blue with titanium oxide. Dyes Pigments 2007, 72, 353–356. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, L.; Li, S. Photocatalytic degradation of Reactive Brilliant Blue KN-R by TiO2/UV process. Desalination 2010, 258, 48–53. [Google Scholar] [CrossRef]
- Brunelli, A.; Badetti, E.; Basei, G.; Izzo, F.C.; Hristozov, D.; MArcomini, A. Effects of organic modifiers on the colloidal stability of TiO2 nanoparticles. A methodological approach for NPs categorization by multivariate statistical analysis. NanoImpact 2018, 9, 114–123. [Google Scholar] [CrossRef]
- Baldisserotto, A.; Buso, P.G.; Radice, M.; Dissette, V.; Lampronti, I.; Gambari, R.; Manfredini, S.; Vertuani, S. Moringa oleifera leaf extracts as multifunctional ingredients for “natural and organic” sunscreens and photoprotective preparations. Molecules 2018, 23, E664. [Google Scholar] [CrossRef] [Green Version]
- Dimitrovska Cvetkovska, A.; Manfredini, S.; Ziosi, P.; Molesini, S.; Dissette, V.; Magri, I.; Scapoli, C.; Carrieri, A.; Durini, E.; Vertuani, S. Factors affecting SPF in vitro measurement and correlation with in vivo results. Int. J. Cosmet. Sci. 2017, 39, 310–319. [Google Scholar] [CrossRef]
- Zeininger, L.; Portilla, L.; Halik, M.; Hirsch, A. Quantitative Determination and Comparison of the Surface Binding of Phosphonic Acid, Carboxylic Acid, and Catechol Ligands on TiO2Nanoparticles. Chem. Eur. J. 2016, 22, 13506–13512. [Google Scholar] [CrossRef]
- Lin, W.; Walter, J.; Burger, A.; Maid, H.; Hirsch, A.; Peukert, W.; Segets, D. A general approach to study the thermodynamics of ligand adsorption to colloidal surfaces demonstrated by means of catechols binding to zinc oxide quantum dots. Chem. Mater. 2015, 27, 358–369. [Google Scholar] [CrossRef]
- Rangan, S.; Theisen, J.P.; Bersch, E.; Bartynski, R.A. Energy level alignment of catechol molecular orbitals on ZnO(1 1over(2, ̄) 0) and TiO2(1 1 0) surfaces. Appl. Surf. Sci. 2010, 256, 4829–4833. [Google Scholar] [CrossRef]
- Schlester, K.; Harwat, M.; Bohm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro Methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Popov, I.; Lewin, G. Antioxidative homeostasis: Characterization by means of chemiluminescent technique. Methods Enzymol. 1999, 300, 437–456. [Google Scholar] [PubMed]
- Higashimoto, S.; Nishi, T.; Yasukawa, M.; Azuma, M.; Sakata, Y.; Kobayashi, H. Photocatalysis of titanium dioxide modified by catechol-type interfacial surface complexes (ISC) with different substituted groups. J. Catal. 2015, 329, 286–290. [Google Scholar] [CrossRef]
Properties and Test Methods | Nanometric TiO2 | Non-nanometric TiO2 |
---|---|---|
Specific surface (m2/g) | 50 ± 20 | 20 ± 10 |
pH value in 4% dispersion | 4.0 ± 0.5 | 5.0 ± 0.5 |
Moisture (wt %) (2 h at 105 °C) | ≤1.5 | ≤0.5 |
TiO2 content (based on ignited material) (wt-%) | >99.5 | |
Tamped density (g/L) | 100–180 | 90–160 |
Formulation | pH | Viscosity (ŋ) cP |
---|---|---|
Only TiO2 | 5.36 | 20590 |
TiO2 + Oxisol mixture | 5.41 | 15840 |
Functionalized TiO2 (TiO2@Oxisol) | 5.48 | 28460 |
Only TiO2 nano | 5.30 | 45700 |
TiO2 nano + Oxisol mixture | 6.24 | 25630 |
Functionalized TiO2 nano (n-TiO2@Oxisol) | 6.50 | 34900 |
Weight Loss (%) | |
---|---|
nano-TiO2@Oxisol | 10.6 ± 0.6 |
TiO2@Oxisol | 5.8 ± 0.3 |
DLS (nm) ± SD | CSA (nm) ± SD | Sedimentation Rate (µm/s) ± SD | |
---|---|---|---|
Non nano TiO2 | 343 ± 18 | 523.9 ± 16 | 251.3 ± 9 |
TiO2@Oxisol | 324 ± 16 | 328.9 ± 5 | 80.0 ± 1 |
Nano TiO2 | 135 ± 7 | 187.5 ± 3 | 26.4 ± 2 |
n-TiO2@Oxisol | 111 ± 6 | 166.2 ± 9 | 20.6 ± 0.2 |
Formulation | µmoli TE/Gram |
---|---|
Emulsion with Oxisol 0.5% | 41.96 ± 2.1 |
Emulsion mixture (Non nan TiO2 + Oxisol) | 10.37 ± 0.3 |
Emulsion mixture (Nano TiO2 + Oxisol) | 1.96 ± 0.02 |
Emulsion with non nano TiO2@Oxisol | 11.91 ± 0.1 |
Emulsion with nano TiO2@Oxisol | 53.70 ± 3.7 |
Substrate | Solvent | pH | Time (h) | Oxisol Desorption(%) |
---|---|---|---|---|
12.0 | 61.43 ± 6.76 | |||
CH3CH2OH/H2O | 6.1 | 9.77 ± 1.95 | ||
2.7 | 11.05 ± 2.21 | |||
Nanometric | CH3CH2OH | - | 4.0 ± 0.5 | 9.71 ± 2.01 |
TiO2 | 12.0 | 1.73 ± 0.31 | ||
H2O | 6.1 | <1.0 | ||
2.7 | <1.0 | |||
12.0 | 7.45 ± 1.86 | |||
CH3CH2OH/H2O | 6.1 | 5.01 ± 1.87 | ||
Non | 2.7 | 4.13 ± 1.03 | ||
nanometric | CH3CH2OH | - | 4.0 ± 0.5 | 9.54 ± 0.922 |
TiO2 | 12.0 | 7.01 ± 2.01 | ||
H2O | 6.1 | <1.0 | ||
2.7 | <1.0 |
Substrate | Issue of Release of the Emulsion Adduct | Time (h) | Oxisol Released in the Emulsion test (%) |
---|---|---|---|
n-TiO2@Oxisol | H2O 0.90% NaCl | 4.0 ± 0.5 | 4.36 ± 0.22 |
TiO2@Oxisol | H2O 0.90% NaCl | 4.0 ± 0.5 | 4.31 ± 0.25 |
Concentration (µM) | ||
Only acid blue 9 solution (Dark) | 109.99 ± 23.59 | |
Only acid blue 9 solution (UV) | 86.50 ± 18.86 | |
Dye concentration (µM) (Nano TiO2 form) | Dye concentration (µM) (Non-nano TiO2 form) | |
TiO2@Oxisol (Dark) | 59.64 ± 13.51 (65.60%) | 76.31 ± 16.87 (83.93%) |
TiO2@Oxisol (UV) | 47.08 ± 11.03 (51.78%) | 57.80 ± 13.14 (63.57%) |
TiO2 (Dark) | 41.74 ± 9.91 (45.91%) | 43.68 ± 10.28 (48.04%) |
TiO2 (UV) | 2.70 ± 2.08 (2.97%) | 2.18 ± 1.95 (2.40%) |
Sample | Concentration µg/mL | % Inhibition ± Standard Deviation |
---|---|---|
Control | 0 | 0.00 ± 0.00 |
1 | −2.73 ± 1.78 | |
Nanometric TiO2 | 10 | −7.50 ± 1.04 |
100 | 3.08 ± 5.24 | |
1 | −1.37 ± 4.27 | |
Nano-TiO2@Oxisol | 10 | 0.18 ± 4.80 |
100 | 4.17 ± 6.20 | |
1 | −1.75 ± 1.77 | |
Non-nanometric TiO2 | 10 | −0.84 ± 1.97 |
100 | 0.30 ± 6.02 | |
1 | −4.40 ± 3.03 | |
TiO2@Oxisol | 10 | 0.51 ± 8.58 |
100 | 6.34 ± 5.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battistin, M.; Dissette, V.; Bonetto, A.; Durini, E.; Manfredini, S.; Marcomini, A.; Casagrande, E.; Brunetta, A.; Ziosi, P.; Molesini, S.; et al. A New Approach to UV Protection by Direct Surface Functionalization of TiO2 with the Antioxidant Polyphenol Dihydroxyphenyl Benzimidazole Carboxylic Acid. Nanomaterials 2020, 10, 231. https://doi.org/10.3390/nano10020231
Battistin M, Dissette V, Bonetto A, Durini E, Manfredini S, Marcomini A, Casagrande E, Brunetta A, Ziosi P, Molesini S, et al. A New Approach to UV Protection by Direct Surface Functionalization of TiO2 with the Antioxidant Polyphenol Dihydroxyphenyl Benzimidazole Carboxylic Acid. Nanomaterials. 2020; 10(2):231. https://doi.org/10.3390/nano10020231
Chicago/Turabian StyleBattistin, Mattia, Valeria Dissette, Alessandro Bonetto, Elisa Durini, Stefano Manfredini, Antonio Marcomini, Elisa Casagrande, Andrea Brunetta, Paola Ziosi, Sonia Molesini, and et al. 2020. "A New Approach to UV Protection by Direct Surface Functionalization of TiO2 with the Antioxidant Polyphenol Dihydroxyphenyl Benzimidazole Carboxylic Acid" Nanomaterials 10, no. 2: 231. https://doi.org/10.3390/nano10020231