Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Antimicrobial Agents
2.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
2.4. Vesicle Preparation
2.5. Vesicle Characterisation
2.6. In Vitro Biocompatibility
2.7. Microbial Strains
2.8. Antimicrobial Tests
2.8.1. Agar Diffusion Method
2.8.2. Micro-Dilution Method
2.9. Statistical Data Analysis
3. Results
3.1. Essential Oil Characterisation
3.2. Vesicle Preparation and Characterisation
3.3. In Vitro Biocompatibility Studies in Keratinocytes
3.4. Agar Diffusion Method
3.5. Micro-Dilution Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Camarda, I.; Mazzola, P.; Brunu, A.; Fenu, G.; Lombardo, G.; Palla, F. Un Agrume Nella Storia Della Sardegna: Citrus Limon Var. Pompia Camarda Var. Nova. Quad. Bot. Amb. Appl. 2013, 24, 109–118. [Google Scholar]
- Manconi, M.; Manca, M.L.; Marongiu, F.; Caddeo, C.; Castangia, I.; Petretto, G.L.; Pintore, G.; Sarais, G.; D’hallewin, G.; Zaru, M.; et al. Chemical Characterization of Citrus Limon Var. Pompia and Incorporation in Phospholipid Vesicles for Skin Delivery. Int. J. Pharm. 2016, 506, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Fancello, F.; Petretto, G.L.; Zara, S.; Sanna, M.L.; Addis, R.; Maldini, M.; Foddai, M.; Rourke, J.P.; Chessa, M.; Pintore, G. Chemical Characterization, Antioxidant Capacity and Antimicrobial Activity Against Food Related Microorganisms of Citrus Limon Var. Pompia Leaf Essential Oil. LWT-Food Sci. Technol. 2016, 69, 579–585. [Google Scholar] [CrossRef]
- Fraternale, D.; Giamperi, L.; Bucchini, A.; Cara, P.; Ricci, D. In Vitro Plant Regeneration from Callus of Citrus X Monstruosa (Pompia), an Endemic Citrus of Sardinia. Nat. Prod. Commun. 2010, 5, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Saddiq, A.A.; Khayyat, S.A. Chemical and Antimicrobial Studies of Monoterpene: Citral. Pestic. Biochem. Physiol. 2010, 98, 89–93. [Google Scholar] [CrossRef]
- Martins, A.P.; Salgueiro, L.; Goncalves, M.J.; da Cunha, A.P.; Vila, R.; Canigueral, S.; Mazzoni, V.; Tomi, F.; Casanova, J. Essential Oil Composition and Antimicrobial Activity of Three Zingiberaceae from S. Tome E Principe. Planta Med. 2001, 67, 580–584. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, J.; Chen, H.; Song, Z.; Guo, H.; Yuan, Y.; Yue, T. Antibacterial Activity of Essential Oils Against Stenotrophomonas Maltophilia and the Effect of Citral on Cell Membrane. LWT 2020, 117, 108667. [Google Scholar] [CrossRef]
- Hu, L.; Du, M.; Zhang, J.; Wang, Y. Chemistry of the Main Component of Essential Oil of Litsea Cubeba and its Derivatives. Open J. For. 2014, 4, 457–466. [Google Scholar]
- Hu, W.; Li, C.; Dai, J.; Cui, H.; Lin, L. Antibacterial Activity and Mechanism of Litsea Cubeba Essential Oil Against Methicillin-Resistant Staphylococcus Aureus (MRSA). Ind. Crops Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Koning, G.A.; Storm, G. Targeted Drug Delivery Systems for the Intracellular Delivery of Macromolecular Drugs. Drug Discov. Today 2003, 8, 482–483. [Google Scholar] [CrossRef]
- Metselaar, J.M.; Storm, G. Liposomes in the Treatment of Inflammatory Disorders. Expert. Opin. Drug Deliv. 2005, 2, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.S.; Dziubla, T.; Shuvaev, V.V.; Muro, S.; Muzykantov, V.R. Advanced Drug Delivery Systems that Target the Vascular Endothelium. Mol. Interv. 2006, 6, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Wu, S.Y. The use of Lipid-Based Nanocarriers for Targeted Pain Therapies. Front. Pharmacol. 2013, 4, 143. [Google Scholar] [CrossRef]
- Cui, H.; Li, W.; Li, C.; Vittayapadung, S.; Lin, L. Liposome Containing Cinnamon Oil with Antibacterial Activity Against Methicillin-Resistant Staphylococcus Aureus Biofilm. Biofouling 2016, 32, 215–225. [Google Scholar] [CrossRef]
- Manconi, M.; Petretto, G.; D’hallewin, G.; Escribano, E.; Milia, E.; Pinna, R.; Palmieri, A.; Firoznezhad, M.; Peris, J.E.; Usach, I.; et al. Thymus Essential Oil Extraction, Characterization and Incorporation in Phospholipid Vesicles for the Antioxidant/Antibacterial Treatment of Oral Cavity Diseases. Colloids Surf. B Biointerfaces 2018, 171, 115–122. [Google Scholar] [CrossRef]
- Risaliti, L.; Kehagia, A.; Daoultzi, E.; Lazari, D.; Bergonzi, M.C.; Vergkizi-Nikolakaki, S.; Hadjipavlou-Litina, D.; Bilia, A.R. Liposomes Loaded with Salvia Triloba and Rosmarinus Officinalis Essential Oils: In Vitro Assessment of Antioxidant, Antiinflammatory and Antibacterial Activities. J. Drug Deliv. Sci. Technol. 2019, 51, 493–498. [Google Scholar] [CrossRef]
- Castangia, I.; Caddeo, C.; Manca, M.L.; Casu, L.; Latorre, A.C.; Diez-Sales, O.; Ruiz-Sauri, A.; Bacchetta, G.; Fadda, A.M.; Manconi, M. Delivery of Liquorice Extract by Liposomes and Hyalurosomes to Protect the Skin Against Oxidative Stress Injuries. Carbohydr. Polym. 2015, 134, 657–663. [Google Scholar] [CrossRef]
- Manca, M.L.; Castangia, I.; Zaru, M.; Nacher, A.; Valenti, D.; Fernandez-Busquets, X.; Fadda, A.M.; Manconi, M. Development of Curcumin Loaded Sodium Hyaluronate Immobilized Vesicles (Hyalurosomes) and their Potential on Skin Inflammation and Wound Restoring. Biomaterials 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Manca, M.L.; Manconi, M.; Falchi, A.M.; Castangia, I.; Valenti, D.; Lampis, S.; Fadda, A.M. Close-Packed Vesicles for Diclofenac Skin Delivery and Fibroblast Targeting. Colloids Surf. B Biointerfaces 2013, 111, 609–617. [Google Scholar] [CrossRef]
- Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Gr. Stat. 1996, 5, 299–314. [Google Scholar]
- Sherry, M.; Charcosset, C.; Fessi, H.; Greige-Gerges, H. Essential Oils Encapsulated in Liposomes: A Review. J. Liposome Res. 2013, 23, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Castangia, I.; Manca, M.L.; Caddeo, C.; Maxia, A.; Murgia, S.; Pons, R.; Demurtas, D.; Pando, D.; Falconieri, D.; Peris, J.E. Faceted Phospholipid Vesicles Tailored for the Delivery of Santolina Insularis Essential Oil to the Skin. Colloids Surf. B Biointerfaces 2015, 132, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Liu, B.; Zheng, Z.; You, X.; Pu, Y.; Li, Q. Preparation of Liposomes Entrapping Essential Oil from Atractylodes Macrocephala Koidz by Modified RESS Technique. Chem. Eng. Res. Des. 2010, 88, 1102–1107. [Google Scholar] [CrossRef]
- Espina, L.; Berdejo, D.; Alfonso, P.; García-Gonzalo, D.; Pagán, R. Potential use of Carvacrol and Citral to Inactivate Biofilm Cells and Eliminate Biofouling. Food Control 2017, 82, 256–265. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural Products as Platforms to Overcome Antibiotic Resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole Plant Extracts Versus Single Compounds for the Treatment of Malaria: Synergy and Positive Interactions. Malar. J. 2011, 10, S4. [Google Scholar] [CrossRef]
- Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacogn. Rev. 2017, 11, 57–72. [Google Scholar]
- Kohlert, C.; van Rensen, I.; Marz, R.; Schindler, G.; Graefe, E.U.; Veit, M. Bioavailability and Pharmacokinetics of Natural Volatile Terpenes in Animals and Humans. Planta Med. 2000, 66, 495–505. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, J.; de Bont, J.A.; Poolman, B. Mechanisms of Membrane Toxicity of Hydrocarbons. Microbiol. Rev. 1995, 59, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and Antifungal Properties of Essential Oil Components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Wu, G.; Zhang, X.; Li, F. Advances in Pharmaceutical Studies on Improvement of Stability of Volatile Oils of Chinese Materia Medica. Pharm. Care Res. 2008, 8, 197–200. [Google Scholar]
- Zhao, Y.; Wang, C.; Chow, A.H.; Ren, K.; Gong, T.; Zhang, Z.; Zheng, Y. Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Oral Delivery of Zedoary Essential Oil: Formulation and Bioavailability Studies. Int. J. Pharm. 2010, 383, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Manconi, M.; Aparicio, J.; Vila, A.O.; Pendás, J.; Figueruelo, J.; Molina, F. Viscoelastic Properties of Concentrated Dispersions in Water of Soy Lecithin. Colloids Surf. A Physicochem. Eng. Asp. 2003, 222, 141–145. [Google Scholar] [CrossRef]
- De Matos, S.P.; Teixeira, H.F.; De Lima, A.A.N.; Veiga-Junior, V.F.; Koester, L.S. Essential Oils and Isolated Terpenes in Nanosystems Designed for Topical Administration: A Review. Biomolecules 2019, 9, 138. [Google Scholar] [CrossRef]
- Egbaria, K.; Weiner, N. Liposomes as a Topical Drug Delivery System. Adv. Drug Deliv. Rev. 1990, 5, 287–300. [Google Scholar] [CrossRef]
- Manconi, M.; Pendas, J.; Ledon, N.; Moreira, T.; Sinico, C.; Saso, L.; Fadda, A.M. Phycocyanin Liposomes for Topical Anti-Inflammatory Activity: In-Vitro in-Vivo Studies. J. Pharm. Pharmacol. 2009, 61, 423–430. [Google Scholar] [CrossRef]
- Singh, M.; Devi, S.; Rana, V.S.; Mishra, B.B.; Kumar, J.; Ahluwalia, V. Delivery of Phytochemicals by Liposome Cargos: Recent Progress, Challenges and Opportunities. J. Microencapsul. 2019, 36, 215–235. [Google Scholar] [CrossRef]
- Hammoud, Z.; Gharib, R.; Fourmentin, S.; Elaissari, A.; Greige-Gerges, H. New Findings on the Incorporation of Essential Oil Components into Liposomes Composed of Lipoid S100 and Cholesterol. Int. J. Pharm. 2019, 561, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Castangia, I.; Manca, M.L.; Caddeo, C.; Bacchetta, G.; Pons, R.; Demurtas, D.; Diez-Sales, O.; Fadda, A.M.; Manconi, M. Santosomes as Natural and Efficient Carriers for the Improvement of Phycocyanin Reepithelising Ability in Vitro and in Vivo. Eur. J. Pharm. Biopharm. 2016, 103, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, N.B.; Abdelkéfi, M.M.; Aissa, R.B.; Chaabouni, M.M. Antibacterial Screening of Origanum Majorana L. Oil from Tunisia. J. Essent. Oil Res. 2001, 13, 295–297. [Google Scholar] [CrossRef]
Compound | RT | A% | RI |
---|---|---|---|
α-Pinene | 13.37 | 0.4 | 1033 |
Camphene | 14.85 | tr | 1081 |
β-Pinene | 16.26 | 1.1 | 1126 |
Sabinene | 16.67 | 0.4 | 1139 |
3-carene | 17.59 | 0.9 | 1166 |
β-Myrcene | 17.87 | 0.8 | 1175 |
2,3-Dehydro-1,8-cineole | 18.89 | tr | 1206 |
limonene | 19.24 | 29.7 | 1217 |
β-Z-Ocimene | 20.26 | 0.5 | 1249 |
β-E-Ocimene | 20.83 | 4.4 | 1267 |
p-Cymene | 21.55 | 0.7 | 1290 |
Terpinolene | 21.99 | tr | 1304 |
5-Hepten-2-one, 6-methyl- | 23.43 | 0.9 | 1352 |
cis-Linalool oxide | 26.27 | 0.1 | 1448 |
trans-Linalool oxide (furanoid) | 27.05 | 0.0 | 1475 |
Citronellal | 27.32 | 0.2 | 1484 |
Linalool | 28.87 | 11.0 | 1535 |
Linalyl acetate | 29.46 | 20.9 | 1555 |
3-Methoxy-p-cymene | 30.73 | 0.2 | 1596 |
Terpinen-4-ol | 31.07 | 0.3 | 1609 |
Megastigma-triene (not identified isomer) | 31.40 | 0.7 | 1622 |
Neral | 33.07 | 6.8 | 1689 |
α-Terpineol | 33.17 | 2.2 | 1693 |
Neryl acetate | 33.72 | 1.1 | 1718 |
Geranial | 34.06 | 11.1 | 1735 |
Nerol | 34.29 | 2.9 | 1746 |
cis-geraniol | 35.00 | 0.5 | 1780 |
Geraniol | 35.74 | 1.2 | 1819 |
Unknown | 38.48 | 0.3 | 1985 |
Unknown | 38.59 | 0.2 | 1992 |
Unknown | 40.12 | 0.2 | 2090 |
Menthadien-1,2-diol | 41.87 | 0.1 | 2216 |
Neric acid | 42.90 | 0.2 | 2286 |
MD (nm) | PI | ZP (mV) | EE (%) | |
---|---|---|---|---|
Empty liposomes | 75 ± 4 | 0.28 ± 0.02 | −70 ± 2 | - |
Pompia e.o. loaded liposomes | 152 ± 18 | 0.31 ± 0.05 | −74 ± 5 | 85 ± 15 |
Citral loaded liposomes | 129 ± 16 | 0.32 ± 0.05 | −72 ± 4 | 88 ± 13 |
Compound (concentration) | E. coli IH (mm) | P. aeruginosa IH (mm) | S. aureus IH (mm) | C. albicans IH (mm) |
---|---|---|---|---|
Pompia e.o. (300 mg/mL) | 13 ± 2 | <5 | 25 ± 6 | 16 ± 3 |
Citral (300 mg/mL) | 20 ± 4 | <5 | 37 ± 1 | 25 ± 5 |
Gentamicin (1.5 mg/mL) | 22 ± 4 | 24 ± 2 | 27 ± 2 | - |
Clotrimazole (250 µg/mL) | - | - | - | 25 ± 1 |
MIC50 (mg/mL) | MFC or MBC | |
---|---|---|
E. coli | ||
Pompia e.o. | 3 | 12 |
Pompia e.o. loaded liposomes | 10 | >10 |
Citral | 1.5 | 6 |
Citral loaded liposomes | 5 | 10 |
P. aeruginosa | ||
Pompia e.o. | 6 | 12 |
Pompia e.o. loaded liposomes | 5 | 10 |
Citral | 6 | >12 |
Citral loaded liposomes | 5 | 10 |
S. aureus | ||
Pompia e.o. | 3 | 6 |
Pompia e.o. loaded liposomes | 10 | >10 |
Citral | 1.5 | 3 |
Citral loaded liposomes | 5 | 5 |
C. albicans | ||
Pompia e.o. | 3 | 6 |
Pompia e.o. loaded liposomes | 2.5 | 10 |
Citral | 1.5 | 3 |
Citral loaded liposomes | 0.6 | 2.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usach, I.; Margarucci, E.; Manca, M.L.; Caddeo, C.; Aroffu, M.; Petretto, G.L.; Manconi, M.; Peris, J.-E. Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections. Nanomaterials 2020, 10, 286. https://doi.org/10.3390/nano10020286
Usach I, Margarucci E, Manca ML, Caddeo C, Aroffu M, Petretto GL, Manconi M, Peris J-E. Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections. Nanomaterials. 2020; 10(2):286. https://doi.org/10.3390/nano10020286
Chicago/Turabian StyleUsach, Iris, Elisabetta Margarucci, Maria Letizia Manca, Carla Caddeo, Matteo Aroffu, Giacomo L. Petretto, Maria Manconi, and José-Esteban Peris. 2020. "Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections" Nanomaterials 10, no. 2: 286. https://doi.org/10.3390/nano10020286
APA StyleUsach, I., Margarucci, E., Manca, M. L., Caddeo, C., Aroffu, M., Petretto, G. L., Manconi, M., & Peris, J.-E. (2020). Comparison between Citral and Pompia Essential Oil Loaded in Phospholipid Vesicles for the Treatment of Skin and Mucosal Infections. Nanomaterials, 10(2), 286. https://doi.org/10.3390/nano10020286