Use of Two-Photon Lithography with a Negative Resist and Processing to Realise Cylindrical Magnetic Nanowires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Ni Nanowires
2.2. Physical and Magnetic Characterisation of Single Ni Nanowires
3. Results
3.1. Physical Characterisation
3.2. Magnetic Characterisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hertel, R. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires—IOPscience. J. Phys. Condens. Matter 2016, 28. [Google Scholar] [CrossRef] [PubMed]
- Parkin, S.S.P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Ferain, E.; Legras, R. Track-etch templates designed for micro- and nanofabrication. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2003, 208, 115–122. [Google Scholar] [CrossRef]
- Bran, C.; Berganza, E.; Fernandez-Rolden, J.A.; Palmero, E.M.; Meier, J.; Calle, E.; Jaafar, M.; Foerster, M.; Aballe, L.; Rodriguez, A.F.; et al. Magnetization ratchet in cylindrical nanowires. Acs Nano 2018, 12, 5932–5939. [Google Scholar] [CrossRef] [PubMed]
- Da Col, S.; Jamet, S.; Rougemaille, N.; Locatelli, A.; Mentes, T.; Burgos, B.; Afid, R.; Darques, M.; Cagnon, L.; Toussaint, J.; et al. Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys. Rev. B 2014, 89. [Google Scholar] [CrossRef] [Green Version]
- Bran, C.; Ivanov, Y.P.; Kosel, J.; Chubykalo-Fesenko, O.; Vazquez, M. Co/Au multisegmented nanowires: A 3D array of magnetostatically coupled nanopillars. Nanotechnology 2017, 28, 095709. [Google Scholar] [CrossRef]
- Palmero, E.; Bran, C.; Rafael, P.; Magen, C.; Vazquez, M. Structural and Magnetic Characterisation of FeCoCu/Cu Multilaer Nanowire Arrays. IEEE Magn. Lett. 2014, 5, 1–4. [Google Scholar] [CrossRef]
- Pal, S.; Saha, S.; Kamalakar, M.; Barman, A. Field-dependent spin waves in high-aspect-ratio single-crystal ferromagnetic nanowires. Nano Res. 2016, 9, 1426–1433. [Google Scholar] [CrossRef]
- Kamalakar, M.; Raychaudhuri, A.; Wei, X.; Teng, J.; Prewett, P. Temperature dependent electrical resistivity of a single strand of ferromagnetic single crystalline nanowire. Appl. Phys. Lett. 2009, 95. [Google Scholar] [CrossRef]
- Kamalakar, M.; Raychaudhuri, A. Low temperature electrical transport in ferromagnetic Ni nanowires. Phys. Rev. B 2009, 79. [Google Scholar] [CrossRef]
- Hunt, M.; Taverne, M.; Askey, J.; May, A.; Van Den Berg, A.; Ho, Y.-L.D.; Rarity, J.; Ladak, S. Harnessing Multi-Photon Absorption to Produce Three-Dimensional Magnetic Structures at the Nanoscale. Materials 2020, 13, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, J.W.; Chen, V.W.; Dong, W.T.; Zhang, Y.D.; Perry, K.J. Fabrication of Tailored Photonic Crystals Using Multiphoton Lithography. In Proceedings of the 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, San Jose, CA, USA, 4–9 May 2008; pp. 1925–1926. [Google Scholar]
- Gissibl, T.; Thiele, S.; Herkommer, A.; Giessen, H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 2016, 10, 554. [Google Scholar] [CrossRef]
- Thomas, R.; Jin, L.; Ladak, S.; Barrow, D.; Smowton, P. In-situ fabricated 3D micro-lenses for photonic integrated circuits. Opt. Express 2018, 26, 13436–13442. [Google Scholar] [CrossRef] [PubMed]
- Tayalia, P.; Mendonca, C.R.; Baldacchini, T.; Mooney, D.J.; Mazur, E. 3D Cell-Migration Studies using Two-Photon engineered polymer scaffolds. Adv. Mater. 2008, 20, 4494–4498. [Google Scholar] [CrossRef]
- May, A.; Hunt, M.; van den Berg, A.; Hejazi, A.; Ladak, S. Realisation of a 3D frustrated magnetic nanowire lattice. Commun. Phys. 2019, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.; Hunt, M.; Boehm, B.; May, A.; Taverne, M.; Ho, D.; Giblin, S.; Read, D.; Rarity, J.; Allenspach, R.; et al. Two photon lithography for 3D Magnetic Nanostructure Fabrication. Nano Res. 2018, 11, 845–854. [Google Scholar] [CrossRef]
- Sahoo, S.; Mondal, S.; Williams, G.; May, A.; Ladak, S.; Barman, A. Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure. Nanoscale 2018, 10, 9981–9986. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.Z.; Zheng, M.L.; Dong, X.Z.; Jin, F.; Zhao, Z.S.; Duan, X.M. Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Appl. Phys. Lett. 2013, 102, 201108. [Google Scholar] [CrossRef]
- Fischer, J.; Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 2013, 7, 22–44. [Google Scholar] [CrossRef]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The design and verification of mumax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef] [Green Version]
- Arzuza, L.; Lopez-Ruiz, R.; Salazar-Aravena, D.; Knobel, M.; Beron, F.; Pirota, K. Domain wall propagation tuning in magnetic nanowires through geometric modulation. J. Magn. Magn. Mater. 2017, 432, 309–317. [Google Scholar] [CrossRef]
- Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J.; Colchero, J.; Gomez-Herrero, J.; Baro, A. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78. [Google Scholar] [CrossRef] [PubMed]
- Vega, V.; Bohnert, T.; Martens, S.; Waleczek, M.; Montero-Moreno, J.M.; Gorlitz, D.; Prida, V.M.; Nielsch, K. Tuning the magnetic anisotropy of Co–Ni nanowires: Comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 2012, 23. [Google Scholar] [CrossRef] [PubMed]
- Berganza, E.; Jaafar, M.; Bran, C.; Fernandez-Roldan, J.A.; Chubykalo-Fesenko, O.; Vazquez, M.; Asenjo, A. Multisegmented Nanowires: A step towards the control of the domain wall configuration. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, T.; Shaijumon, M.; Ci, L.; Ajayan, M.; Anantharaman, M. On the Growth Mechanism of Nickel and Cobalt Nanowires and Comparison of Their Magnetic Properties. Nano Res. 2008, 1, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Zipfel, W.R.; Williams, R.M.; Webb, W.W. Nonlinear Magic: Multiphoton Microscopy in the Biosciences. Nat. Biotechnol. 2003, 21, 1369–1377. [Google Scholar] [CrossRef]
- Fernandez-Roldan, J.; del Real, R.; Bran, C.; Vazquez, M.; Chubykalo-Fesenko, O. Magnetization pinning in modulated nanowires: From topological protection to the “corkscrew” mechanism. Nanoscale 2018, 10, 5923–5927. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.M.; Keavney, D.J. Studies of nanomagnetism using synchrotron-based x-ray photoemission electron microscopy (X-PEEM). Rep. Prog. Phys. 2012, 75. [Google Scholar] [CrossRef]
- Gilbertson, A.M.; Benstock, D.; Fearn, M.; Kormanyos, A.; Ladak, S.; Emeny, M.T.; Lambert, C.J.; Ashley, T.; Solin, S.A.; Cohen, L.F. Sub-100-nm negative bend resistance ballistic sensors for high spatial resolution magnetic field detection. Appl. Phys. Lett. 2011, 98. [Google Scholar] [CrossRef] [Green Version]
- Ladak, S.; Read, D.E.; Perkins, G.K.; Cohen, L.F.; Branford, W.R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 2010, 6, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Zeissler, K.; Walton, S.K.; Ladak, S.; Read, D.E.; Tyliszczak, T.; Cohen, L.F.; Branford, W.R. The non-random walk of chiral magnetic charge carriers in artificial spin ice. Nat. Sci. Rep. 2013, 3, 1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladak, S.; Read, D.E.; Branford, W.R.; Cohen, L.F. Direct observation and control of magnetic monopole defects in an artificial spin-ice material. New J. Phys. 2011, 13. [Google Scholar] [CrossRef]
- Ladak, S.; Walton, S.K.; Zeissler, K.; Tyliszczak, T.; Read, D.E.; Branford, W.R.; Cohen, L.F. Disorder-independent control of magnetic monopole defect population in artificial spin-ice honeycombs. New J. Phys. 2012, 14. [Google Scholar] [CrossRef] [Green Version]
- Branford, W.R.; Ladak, S.; Read, D.E.; Zeissler, K.; Cohen, L.F. Emerging Chirality in Artificial Spin Ice. Science 2012, 335, 1597–1600. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askey, J.; Hunt, M.O.; Langbein, W.; Ladak, S. Use of Two-Photon Lithography with a Negative Resist and Processing to Realise Cylindrical Magnetic Nanowires. Nanomaterials 2020, 10, 429. https://doi.org/10.3390/nano10030429
Askey J, Hunt MO, Langbein W, Ladak S. Use of Two-Photon Lithography with a Negative Resist and Processing to Realise Cylindrical Magnetic Nanowires. Nanomaterials. 2020; 10(3):429. https://doi.org/10.3390/nano10030429
Chicago/Turabian StyleAskey, Joseph, Matthew Oliver Hunt, Wolfgang Langbein, and Sam Ladak. 2020. "Use of Two-Photon Lithography with a Negative Resist and Processing to Realise Cylindrical Magnetic Nanowires" Nanomaterials 10, no. 3: 429. https://doi.org/10.3390/nano10030429