PL Tunable GaN Nanoparticles Synthesis through Femtosecond Pulsed Laser Ablation in Different Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.3. Characterizations
3. Results
3.1. Morphology and Structural Properties of GaN-NPs
3.2. Optical Properties of GaN-NPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hochella, M.F., Jr.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 2019, 363, eaau8299. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, J.Z. Optical properties and applications of hybrid semiconductor nanomaterials. Coord. Chem. Rev. 2009, 253, 3015–3041. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Lang, X.Y.; Jiang, Q. The Effect of Alloying on the Bandgap Energy of Nanoscaled Semiconductor Alloys. Adv. Funct. Mater. 2008, 18, 1422–1429. [Google Scholar] [CrossRef]
- Mikhailova, M.P.; Moiseev, K.D.; Yakovlev, Y.P. Discovery of III-V Semiconductors: Physical Properties and Application. Semiconductors 2019, 53, 273–290. [Google Scholar] [CrossRef]
- Mayer, B.; Wirths, S.; Schmid, H.; Mauthe, S.; Convertino, C.; Baumgartner, Y.; Czornomaz, L.; Sousa, M.; Riel, H.; Moselund, K.E. Monolithic integration of III-V nanostructures for electronic and photonic applications. Low-Dimens. Mater. Devices 2017, 10349. [Google Scholar] [CrossRef]
- Kanamura, M.; Ohki, T.; Kikkawa, T.; Imanishi, K.; Watanabe, K.; Joshin, K. Recent Progress in GaN HEMT for High-Frequency and High-Power Applications. In Proceedings of the 2012 5th IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Singapore, 21–23 November 2012; pp. 156–158. [Google Scholar]
- Chen, K.J.; Haberlen, O.; Lidow, A.; Tsai, C.L.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Chitara, B.; Late, D.J.; Krupanidhi, S.B.; Rao, C.N.R. Room-temperature gas sensors based on gallium nitride nanoparticles. Solid State Commun. 2010, 150, 2053–2056. [Google Scholar] [CrossRef]
- Fan, G.; Wang, C.; Fang, J. Solution-based synthesis of III–V quantum dots and their applications in gas sensing and bio-imaging. Nano Today 2014, 9, 69–84. [Google Scholar] [CrossRef]
- Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538–554. [Google Scholar] [CrossRef]
- Vahala, K. Optical microcavities. Nature 2003, 424, 839–846. [Google Scholar] [CrossRef]
- Gross, M.; Henn, G.; Ziegler, J.; Allenspacher, P.; Cychy, C.; Schroder, H. Characteristics of undoped and magnesium doped GaN films grown by laser induced MBE. Mater. Sci. Eng. B 1999, 59, 94–97. [Google Scholar] [CrossRef]
- Chen, C.-C.; Liang, C.-H. Syntheses of Soluble GaN Nanocrystals by a Solution-Phase Reaction. J. Sci. Eng. 2002, 5, 223–226. [Google Scholar]
- Morkoç, H.; Strite, S.; Gao, G.B.; Lin, M.E.; Sverdlov, B.; Burns, M. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 1994, 76, 1363–1398. [Google Scholar] [CrossRef]
- Gyger, F.; Bockstaller, P.; Groger, H.; Gerthsen, D.; Feldmann, C. Quantum-confined GaN nanoparticles synthesized via liquid-ammonia-in-oil-microemulsions. Chem. Commun. 2014, 50, 2939–2942. [Google Scholar] [CrossRef] [PubMed]
- You, K.H.; Kim, J.H.; You, S.J.; Lee, H.C.; Ruh, H.; Seong, D.J. Gallium nitride nanoparticle synthesis using nonthermal plasma with gallium vapor. Curr. Appl. Phys. 2018, 18, 1553–1557. [Google Scholar] [CrossRef]
- Kim, T.H.; Choi, S.; Park, D.W. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine. Nanomaterials 2016, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gokce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Lam, H.M.; Hong, M.H.; Yuan, S.; Chong, T.C. Growth of β-Ga2O3 nanoparticles by pulsed laser ablation technique. Appl. Phys. A 2004, 79, 2099–2102. [Google Scholar] [CrossRef]
- Demirel, A.; Öztaş, T.; Kurşungöz, C.; Yılmaz, İ.; Ortaç, B. Synthesis of blue-shifted luminescent colloidal GaN nanocrystals through femtosecond pulsed laser ablation in organic solution. J. Nanopart. Res. 2016, 18, 128. [Google Scholar] [CrossRef]
- Martínez-Tong, D.E.; Sanz, M.; Ezquerra, T.A.; Nogales, A.; Marco, J.F.; Castillejo, M.; Rebollar, E. Formation of polymer nanoparticles by UV pulsed laser ablation of poly (bisphenol A carbonate) in liquid environment. Appl. Surf. Sci. 2017, 418, 522–529. [Google Scholar] [CrossRef]
- Yamanaka, T.; Alexson, D.; Stroscio, M.A.; Dutta, M.; Petroff, P.; Brown, J.; Speck, J. Phonon modes in self-assembled GaN quantum dots. J. Appl. Phys. 2008, 104, 093512. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Morkoç, H. Luminescence properties of defects in GaN. J. Appl. Phys. 2005, 97, 061301. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Korotkov, R.Y. Analysis of the temperature and excitation intensity dependencies of photoluminescence in undoped GaN films. Phys. Rev. B 2001, 64, 115205. [Google Scholar] [CrossRef]
- Yang, H.C.; Lin, T.Y.; Chen, Y.F. Nature of the 2.8-eV photoluminescence band in Si-doped GaN. Phys. Rev. B 2000, 62, 12593–12596. [Google Scholar] [CrossRef]
GaN NPs | Ga2p | N1s | ||||||
---|---|---|---|---|---|---|---|---|
Sensitivity factor | Area | FWHM 1/eV | Ratio% | Sensitivity factor | Area | FWHM 1/eV | Ratio% | |
@air | 5.58 | 20,379 | 1.7 | 63 | 0.477 | 1,062 | 3.7 | 37 |
@water | 124,318 | 1.8 | 46 | 12,531 | 3.4 | 54 | ||
@ethanol | 301,749 | 2.1 | 58 | 19,131 | 3.6 | 42 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Xu, S.; Gao, B.; Pan, L. PL Tunable GaN Nanoparticles Synthesis through Femtosecond Pulsed Laser Ablation in Different Environments. Nanomaterials 2020, 10, 439. https://doi.org/10.3390/nano10030439
Hao J, Xu S, Gao B, Pan L. PL Tunable GaN Nanoparticles Synthesis through Femtosecond Pulsed Laser Ablation in Different Environments. Nanomaterials. 2020; 10(3):439. https://doi.org/10.3390/nano10030439
Chicago/Turabian StyleHao, Juan, Sijia Xu, Bingrong Gao, and Lingyun Pan. 2020. "PL Tunable GaN Nanoparticles Synthesis through Femtosecond Pulsed Laser Ablation in Different Environments" Nanomaterials 10, no. 3: 439. https://doi.org/10.3390/nano10030439
APA StyleHao, J., Xu, S., Gao, B., & Pan, L. (2020). PL Tunable GaN Nanoparticles Synthesis through Femtosecond Pulsed Laser Ablation in Different Environments. Nanomaterials, 10(3), 439. https://doi.org/10.3390/nano10030439