Core–Shell Structured Phenolic Polymer@TiO2 Nanosphere with Enhanced Visible-Light Photocatalytic Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
- Enzyme-catalyzed Polymerization of phenol
- Preparation of the PP@TiO2 core–shell nanosphere
- Photocatalytic measurement
3. Results
3.1. Characterizaion of PP
3.2. Characterization of PP@TiO2 Core–Shell Nanosphere
3.3. Photocatalytic Efficiency
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghicov, A.; Schmuki, P. Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2009, 2791–2808. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Wchrauben, J.N.; Hayoun, R.; Valdez, C.N.; Braten, M.; Fridley, L.; May, J.M. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science 2012, 336, 1298–1301. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Masood, M.T.; Qudsia, S.; Hadadian, M.; Weinberger, C.; Nyman, M.; Ahläng, C.; Dahlström, S.; Liu, M.; Vivo, P.; Österbacka, R.; et al. Investigation of well-defined pinholes in TiO2 electron selective layers used in planar heterojunction perovskite solar cells. Nanomaterials 2020, 10, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fröschl, T.; Hörmann, U.; Kubiak, P.; Kučerová, G.; Pfanzelt, M.; Weiss, C.K.; Behm, R.J.; Hüsing, N.; Kaiser, U.; Landfester, K.; et al. High surface area crystalline titanium dioxide: Potential and limits in electrochemical energy storage and catalysis. Chem. Soc. Rev. 2012, 41, 5313–5360. [Google Scholar] [CrossRef]
- Augustyn, V.; White, E.R.; Ko, J.; Grüner, G.; Regan, B.C.; Dunn, B. Lithium-ion storage properties of titanium oxide nanosheets. Mater. Horiz. 2014, 1, 219–223. [Google Scholar] [CrossRef]
- Gonçalves, D.M.; Chiasson, S.; Girard, D. Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles. Toxicol. Vitr. 2010, 336, 1298–1301. [Google Scholar] [CrossRef]
- Lei, P.; Wang, F.; Zhang, S.; Ding, Y.; Zhao, J.; Yang, M. Conjugation-grafted-TiO2 nanohybrid for high photocatalytic efficiency under visible light. ACS Appl. Mater. Interfaces 2014, 6, 2370–2376. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, L. Preparation of photocatalytic Fe2O3-TiO2 coatings in one step by metal organic chemical vapor deposition. Appl. Surf. Sci. 2008, 254, 240–2412. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, S.; Bard, A.J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano. Lett. 2006, 6, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Murakami, M.; Shono, T.; Hasegawa, T.; Fukumura, T.; Kawasaki, M.; Ahmet, P.; Chikyow, T.; Koshihara, S.; Koinuma, H. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 2001, 219, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 2002, 81, 454–456. [Google Scholar] [CrossRef]
- Huang, C.C.; Parasuraman, P.S.; Tsai, H.C.; Jhu, J.J.; Imae, T. Synthesis and characterization of porphyrin-TiO2 core-shell nanoparticles are visible light photocatalyst. RSC Adv. 2014, 4, 6540–6544. [Google Scholar] [CrossRef]
- Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440. [Google Scholar] [CrossRef]
- Safardoust-Hojaghan, H.; Salavati-Niasari, M. Degradation of ethylene blue as a pollutant with N-doped grapheme quantum dot/titanium dioxide nanocomposte. J. Clean. Prod. 2017, 148, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Su, Y.; Zhang, B.; Lee, A.F.; Isaacs, M.A.; Wilson, K.; Li, L.; Ren, Y.; Huang, J.; Haruta, M.; et al. Classical strong metal-support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 2017, 3, e1700231. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Karthik, K.V.; Prasad, S.B.B.; Soni, S.K.; Jeong, H.M.; Raghu, A.V. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 2016, 120, 169–174. [Google Scholar] [CrossRef]
- Li, W.; Elzatahry, A.; Aldhayan, D.; Zhao, D. Core-shell structured titanium dioxide nanomaterials for solar energy utilization. Chem. Soc. Rev. 2018, 47, 8203–8237. [Google Scholar] [CrossRef]
- Ghosh, Chaudhuri, R.; Paria, S. Core/shell nanoparticles: Classes, properties, Synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A.V.; Peng, D.L.; Zboril, R.; Varma, R.S. Core-shell nanoparticles: Synthesis and applications in catalysis electocatalysis. Chem. Soc. Rev. 2015, 44, 7540–7590. [Google Scholar] [CrossRef] [PubMed]
- Panagopoulos, I.K.; Maggos, T.; Arkas, M.; Tsetsekou, A. Development of SiO2@TiO2 core-shell nanospheres for catalytic applications. Appl. Surf. Sci. 2018, 441, 223–231. [Google Scholar]
- Dong, W.; Pan, F.; Xu, L.; Zheng, M.; Sow, C.H.; Wu, K.; Xu, G.Q.; Chen, W. Facile synthesis of CdS@TiO2 core-shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 2015, 349, 279–286. [Google Scholar] [CrossRef]
- Yang, X.H.; Fu, H.T.; Wong, K.; Jiang, X.C.; Yu, A.B. Hybrid Ag@TiO2 core-shell nanostructures with highly enhanced photocatalytic performance. Nanotechnology 2013, 24, 415601. [Google Scholar] [CrossRef]
- Tanaka, A.; Fuku, K.; Nishi, T.; Hashimoto, K.; Kominami, H. Functionalization of Au/TiO2 plasmonic photocatalysts with Pd by formation of a core-shell structure for effective dechlorination of chlorobenzene under irradiation of visible light. J. Phys. Chem. C 2013, 117, 16983–16989. [Google Scholar] [CrossRef]
- Pan, J.; Hühne, S.M.; Shen, H.; Xiao, L.; Born, P.; Mader, W.; Mathur, S. SnO2-TiO2 core-shell nanowire structure: Investigations on solid state reactivity and photocatalytic behavior. J. Phys. Chem. C 2011, 115, 17265–17269. [Google Scholar] [CrossRef]
- Khashan, S.; Dagher, S.; Tit, N.; Alazzam, A.; Obaidat, I. Novel method for synthesis of Fe3O4@TiO2 core/shell nanoparticles. Surf. Coat. Technol. 2017, 322, 92–98. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, D.; Yu, C.; Cao, L.; Wang, C.; Zhang, J.; Zhu, H.; Hu, Y.S.; Dai, S.; Lu, J.; et al. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. J. Power Sources. 2016, 308, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Imhof, A. Preparation and characterization of titania-coated polystryrene spheres and hollow titania shells. Langmuir 2001, 17, 359–3585. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, G.; Li, C.Q.; Liu, F.Q. Titania-coated polystyrene hybrid microballs prepared with miniemulsion polymerization. Langmuir 2004, 20, 1420–1424. [Google Scholar] [CrossRef]
- Shi, F.; Li, Y.; Wang, H.; Zhang, Q. Formation of core/shell structured polystyrene/anatase TiO2 photocatalyst via vapor phase hydrolysis. Appl. Catal. B Environ. 2012, 123, 127–133. [Google Scholar] [CrossRef]
- Karabacak, R.B.; Erdem, M.; Yurdakal, S.; Cimen, Y.; Türk, H. Facile two-step preparation of polystyrene/anatase TiO2 core/shell colloidal particles and their potential use as an oxidation photocatalyst. Mater. Chem. Phys. 2014, 144, 498–504. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, C.; Ren, Y.; Yang, W.; Che, H.; Mu, J. Preparation of PS@TiO2 composited particles and their visible light photocatalytic properties. Optoelectron. Adv. Mat. 2018, 12, 617–621. [Google Scholar]
- Kim, Y.J.; Uyama, H.; Kobayashi, S. Regioselective synthesis of poly (phenylene) as a complex with poly (ethylene glycol) by template polymerization of phenol in water. Macromolecules 2003, 36, 5058–5060. [Google Scholar] [CrossRef]
- Bruno, F.F.; Nagarajan, R.; Kumar, J.; Samuelson, L.A. Novel enzymatic polyethylene oxide-polyphenol system for ionic conductivity. J. Macromol. Sci. Part A Pure Appl. Chem. 2002, 39, 1061–1068. [Google Scholar] [CrossRef]
- Mita, N.; Tawaki, S.; Uyama, H.; Kobayashi, S. Enzymatic oxidative polymerization of phenol in an aqueous solution in the presence of a catalytic amount of cyclodextrin. Macromol. Biosci. 2002, 2, 127–130. [Google Scholar] [CrossRef]
- Reihmann, M.H.; Ritter, H. Oxidative oligomerization of cyclodextrin-complexed bifunctional phenols catalyzed by horseradish peroxidase in water. Macromol. Chem. Phys. 2000, 201, 798–804. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Xue, Y.; Duan, H.; Cui, Y. Enzymatic synthesis of soluble phenol polymer in water using anionic surfactant as additive. Polym. Int. 2013, 62, 1277–1282. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, W.; Chen, H.; Cui, Y. Enzymatic synthesis of phenol polymer and its functionalization. J. Mol. Catal. B Enzym. 2013, 87, 30–36. [Google Scholar] [CrossRef]
- Reddy, P.A.K.; Vattikuti, S.V.P.; Baik, Y.-J.; Byon, C. Eco-friendly, hydrogen fluoride-free, morphology- oriented synthesis of TiO2 with exposed (001) facets. Ceram. Int. 2019, 45, 2178–2184. [Google Scholar]
- Lei, P.; Wang, F.; Gao, X.; Ding, Y.; Zhang, S.; Zhao, J.; Liu, S.; Yang, M. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants. J. Hazard. Mater. 2012, 227–228, 185–194. [Google Scholar] [CrossRef]
- Ghanem, A.F.; Badawy, A.A.; Ismail, N.; Rayn Tian, Z.; Abdel Rehim, M.H.; Rabia, A. Photocatalytic activity of hyperbranched polyester/TiO2 nanocomposites. Appl. Catal. A Gen. 2014, 472, 191–197. [Google Scholar] [CrossRef]
- Reddy, P.A.K.; Manvitha, C.; Boddula, R.; Vattikuti, S.V.P.; Kumar, M.K.; Byon, C. Single-step hydrothermal synthesis of wrinkled grapheme wrapped TiO2 nanotubes for photocatalytic hydrogen production and supercapacitor applications. Mater. Res. Bull. 2018, 98, 314–321. [Google Scholar]
- Vattikuti, S.V.P.; Reddy, P.A.K.; Nagajyothi, P.C.; Shim, J.; Byon, C. Hydrothermally synthesized Na2Ti3O7 nanotuble-V2O5 heterostructures with improved visible photocatalytic degradation and hydrogen evolution—its photocorrosion suppression. J. Alloys Compd. 2018, 740, 574–586. [Google Scholar] [CrossRef]
- Mais, L.; Mascia, M.; Palmas, S.; Vacca, A. Photoelectrochemical oxidation of phenol with nanostructured TiO2-PANI electrodes under solar light irradiation. Sep. Purif. Technol. 2019, 208, 153–159. [Google Scholar] [CrossRef]
- Palmas, S.; Castresana, P.A.; Mais, L.; Vacca, A.; Mascia, M.; Ricci, P.C. TiO2-WO3 nanostructured systems for photoelectrochemical applications. RSC Adv. 2016, 6, 101671–101682. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, M.; Li, Q.; Yang, J. Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst. Appl. Surf. Sci. 2017, 391, 184–193. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, L.; Zhang, S.; Wang, Y.; Liu, B.; Ren, Y. Core–Shell Structured Phenolic Polymer@TiO2 Nanosphere with Enhanced Visible-Light Photocatalytic Efficiency. Nanomaterials 2020, 10, 467. https://doi.org/10.3390/nano10030467
Xu X, Zhang L, Zhang S, Wang Y, Liu B, Ren Y. Core–Shell Structured Phenolic Polymer@TiO2 Nanosphere with Enhanced Visible-Light Photocatalytic Efficiency. Nanomaterials. 2020; 10(3):467. https://doi.org/10.3390/nano10030467
Chicago/Turabian StyleXu, Xiankui, Lei Zhang, Shihua Zhang, Yanpeng Wang, Baoying Liu, and Yanrong Ren. 2020. "Core–Shell Structured Phenolic Polymer@TiO2 Nanosphere with Enhanced Visible-Light Photocatalytic Efficiency" Nanomaterials 10, no. 3: 467. https://doi.org/10.3390/nano10030467
APA StyleXu, X., Zhang, L., Zhang, S., Wang, Y., Liu, B., & Ren, Y. (2020). Core–Shell Structured Phenolic Polymer@TiO2 Nanosphere with Enhanced Visible-Light Photocatalytic Efficiency. Nanomaterials, 10(3), 467. https://doi.org/10.3390/nano10030467