Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination
Abstract
:1. Introduction
2. Structure Design and Simulation Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rakic, A.D.; Djurisic, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271–5283. [Google Scholar] [PubMed]
- Monticone, F.; Alù, A. Metamaterial, plasmonic and nanophotonic devices. Rep. Prog. Phys. 2017, 80, 036401. [Google Scholar] [PubMed]
- Suarez, M.A.; Grosjean, T.; Charraut, D.; Courjon, D. Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications. Opt. Commun. 2007, 270, 447–454. [Google Scholar]
- Zhang, J.; Pendry, J.B.; Luoa, Y. Transformation optics from macroscopic to nanoscale regimes: A review. Adv. Photonics 2009, 1, 014001. [Google Scholar]
- Ho, Y.Z.; Chen, W.T.; Huang, Y.W.; Wu, P.C.; Tseng, M.L.; Wang, Y.T.; Chau, Y.F.; Tsai, D.P. Tunable plasmonic resonance arising from broken symmetric silver nanobeads with dielectric pores. J. Opt. 2012, 14, 114010. [Google Scholar]
- Chou Chau, Y.F. Mid-infrared sensing properties of a plasmonic metal–insulator–metal waveguide with a single stub including defects. J. Phys. D Appl. Phys. 2020, 53, 115401. [Google Scholar]
- Stockman, M. Nanoplasmonics: Past, present, and glimpse into future. Opt. Express 2011, 19, 22029–22106. [Google Scholar]
- Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer-Verlag: Berlin, Germany, 1995. [Google Scholar]
- Uskov, A.V.; Protsenko, I.E.; Mortensen, N.A.; O’Reilly, E.P. Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: A quantum mechanical consideration. Plasmonics 2014, 9, 185–192. [Google Scholar]
- Sung, M.J.; Ma, Y.F.; Chau, Y.F.; Huang, D.W. Plasmon field enhancement in silver core-protruded silicon shell nanocylinder illuminated with light at 633 nm. Appl. Opt. 2010, 49, 6295–6301. [Google Scholar]
- Kumara, N.T.R.N.; Chou Chau, Y.F.; Huang, J.W.; Huang, H.J.; Lin, C.T.; Chiang, H.P. Plasmonic spectrum on 1D and 2D periodic arrays of rod-shape metal nanoparticle pairs with different core patterns for biosensor and solar cell applications. J. Opt. 2016, 18, 115003. [Google Scholar]
- Huang, H.J.; Wang, Y.H.; Chau, Y.F.C.; Chiang, H.P.; Wu, J.C.S. Magnetic field-enhancing photocatalytic reaction in micro optofluidic chip reactor. Nanoscale Res. Lett. 2019, 14, 323. [Google Scholar] [PubMed] [Green Version]
- Benz, F.; de Nijs, B.; Tserkezis, C.; Chikkaraddy, R.; Sigle, D.O.; Pukenas, L.; Evans, S.D.; Aizpurua, J.; Baumberg, J.J. Generalized circuit model for coupled plasmonic systems. Opt. Express 2015, 23, 33255–33269. [Google Scholar] [PubMed] [Green Version]
- Smolyaninov, A.; Pang, L.; Freeman, L.; Abashin, M.; Fainman, Y. Broadband metacoaxial nanoantenna for metasurface and sensing applications. Opt. Express 2014, 22, 22786–22793. [Google Scholar] [PubMed]
- Du, C.; You, Y.; He, C.; Luo, J.; Shi, D. Surface-enhanced Raman scattering from individual Au nanoparticles on Au films. Plasmonics 2012, 7, 475–478. [Google Scholar]
- Lin, C.T.; Chang, M.N.; Huang, H.J.; Chen, C.H.; Sun, R.J.; Liao, B.H.; Chou Chau, Y.F.; Hsiao, C.N.; Shiao, M.H.; Tseng, F.G. Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation. Electrochim. Acta 2016, 192, 15–21. [Google Scholar]
- Chau, Y.F.; Yang, T.J.; Lee, W.D. Coupling technique for efficient interfacing between silica waveguides and planar photonic crystal circuits. Appl. Opt. 2004, 43, 6656–6663. [Google Scholar]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar]
- Danilov, A.; Tselikov, G.; Wu, F.; Kravets, V.G.; Ozerov, I.; Bedu, F.; Grigorenko, A.N.; Kabashin, A.V. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. Biosens. Bioelectron. 2018, 104, 102–112. [Google Scholar]
- Chou Chau, Y.F.; Wang, C.K.; Shen, L.; Lim, C.M.; Chiang, H.P.; Chou Chao, C.T.; Huang, H.J.; Lin, C.T.; Kumara, N.T.R.N.; Voo, N.Y. Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep. 2017, 7, 16817. [Google Scholar]
- Hsieh, L.Z.; Chau, Y.F.C.; Lim, C.M.; Lin, M.H.; Huang, H.J.; Lin, C.T.; Syafi’ie, M.I.M.N. Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt. Commun. 2016, 370, 85–90. [Google Scholar]
- Chau, Y.F.; Yeh, H.H.; Tsai, D.P. Surface plasmon effects excitation from three-pair arrays of silver-shell nanocylinders. Phys. Plasm. 2009, 16, 022303. [Google Scholar]
- Kabashin, A.V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.A.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871. [Google Scholar]
- Chou Chau, Y.F.; Chou Chao, C.T.; Lim, C.M.; Huang, H.J.; Chiang, H.P. Depolying tunable metal-shell/dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime. ACS Omega 2018, 3, 7508–7516. [Google Scholar]
- Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Usman, A.; Lim, C.M.; Voo, N.Y.; Mahadi, A.H.; Kumara, N.T.R.; Chiang, H.P. Plasmonic perfect absorber based on metal nanorod arrays connected with veins. Results Phys. 2019, 15, 102567. [Google Scholar]
- Withayachumnankul, W.; Shah, C.; Fumeaux, C.; Ung, B.; Padilla, W.; Bhaskaran, M.; Abbott, D.; Sriram, S. Plasmonic resonance toward terahertz perfect absorbers. ACS Photonics 2014, 1, 625–630. [Google Scholar]
- Cheng, Y.; Luo, H.; Chen, F.; Gong, R. Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Continuum. 2019, 2, 2113–2122. [Google Scholar]
- Chen, M.; He, Y.; Ye, Q.; Zhu, J. Tuning plasmonic near-perfect absorber for selective absorption applications. Plasmonic 2019, 14, 1357–1364. [Google Scholar]
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139. [Google Scholar]
- Huang, H.J.; Liu, B.H.; Su, J.; Chen, P.J.; Lin, C.T.; Chiang, H.P.; Kao, T.S.; Chou Chau, Y.F.; Kei, C.C.; Hwang, C.H. Light energy transformation over a few nanometers. J. Phys. D Appl. Phys. 2017, 50, 375601. [Google Scholar]
- Yi, Z.; Liang, C.; Chen, X.; Zhou, Z.; Tang, Y.; Ye, X.; Yi, Y.; Wang, J.; Wu, P. Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application. Micromachines (Basel) 2019, 10, 443. [Google Scholar]
- Cheng, Y.; Mao, X.; Wu, C.; Lin, G.; Zhou, R. Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. Opt. Mater. 2016, 53, 195–200. [Google Scholar]
- Safaee, S.M.R.; Janipour, M.; Karami, M.A. Modeling and analysis of optical properties of a gold nanoring based on electric and magnetic dipoles. Appl. Opt. 2015, 54, 8313–8317. [Google Scholar] [PubMed]
- Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Wang, Y.C.; Chiang, H.P.; Idris, M.N.S.M.; Masri, Z.; Lim, C.M. Strong and tunable plasmonic field coupling and enhancement generating from the protruded metal nanorods and dielectric cores. Results Phys. 2019, 13, 102290. [Google Scholar]
- Yang, Y.; Huang, R.; Cong, L.; Zhu, Z.; Gu, J.; Tian, Z.; Singh, R.; Zhang, S.; Han, J.; Zhang, W. Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials. Appl. Phys. Lett. 2011, 98, 121114. [Google Scholar]
- O’Hara, J.F.; Singh, R.; Brener, I.; Smirnova, E.; Han, J.; Taylor, A.J.; Zhang, W. Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations. Opt. Express 2008, 16, 1786–1795. [Google Scholar]
- Tong, L.; Wei, H.; Zhang, S.; Xu, H. Recent advances in plasmonic sensors. Sensors (Basel) 2014, 14, 7959–7973. [Google Scholar]
- Eden, R.; Shanhui, F. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express 2009, 17, 15145–15159. [Google Scholar]
- Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Zhang, B. High performance Fe- and N- doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1765. [Google Scholar]
- Guo, J.; Wu, Z.; Li, Y.; Zhao, Y. Design of plasmonic photodetector with high absorptance and nano-scale active regions. Opt. Express 2016, 24, 18229–18243. [Google Scholar]
- Chau, Y.F.; Tsai, D.P. Three-dimensional analysis of silver nano-particles doping effects on super resolution near-field structure. Opt. Commnun. 2007, 269, 389–394. [Google Scholar]
- Lai, C.H.; Wang, G.A.; Ling, T.K.; Wang, T.J.; Chiu, P.K.; Chou Chau, Y.F.; Huang, C.C.; Chiang, H.P. Near infrared surface-enhanced Raman scattering based on starshaped gold/silver nanoparticles and hyperbolic metamaterial. Sci. Rep. 2017, 7, 5446. [Google Scholar] [PubMed] [Green Version]
- Lin, J.M.; Chau, Y.F. Radome slope compensation using multiple-model kalman filters. J. Guid. Control Dyn. 1995, 18, 637–640. [Google Scholar]
- Wu, D.; Li, R.F.; Liu, Y.M.; Yu, Z.Y.; Yu, L.; Chen, L.; Liu, C.; Ma, R.; Ye, H. Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region. Nanoscale Res. Lett. 2017, 12, 427. [Google Scholar] [PubMed]
- Xiong, X.; Jiang, S.C.; Hu, Y.H.; Peng, R.W.; Wang, M. Structured metal film as a perfect absorber. Adv. Mater. 2013, 25, 3994–4000. [Google Scholar]
- Lee, K.S.; El-Sayed, M. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006, 110, 19220–19225. [Google Scholar]
- Alharbi, R.; Irannejad, M.; Yavuz, M. A Short review on the role of the metal-graphene hybrid nanostructure in promoting the localized surface plasmon resonance sensor performance. Sensors (Basel) 2019, 19, 862. [Google Scholar]
- Tanaka, Y.; Sasaki, K. Efficient optical trapping using small arrays of plasmonic nanoblock pairs. Appl. Phys. Lett. 2012, 100, 021102. [Google Scholar]
- Jamali, A.; Witzigmann, B. Plasmonic perfect absorbers for biosensing applications. Plasmonics 2014, 9, 1265–1270. [Google Scholar]
- Cheng, Y.Z.; Zhang, H.S.; Mao, X.S.; Gong, R.Z. Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application. Mater. Lett. 2018, 219, 123–126. [Google Scholar]
- Liao, Y.L.; Zhao, Y. Ultrabroad band absorber using a deep metallic grating with narrow slits. Opt. Commun. 2015, 334, 328–331. [Google Scholar]
- Tseng, M.L.; Chang, C.M.; Cheng, B.H.; Wu, P.C.; Chung, K.S.; Hsiao, M.K.; Huang, H.W.; Huang, D.W.; Chiang, H.P.; Leung, P.K.; et al. Multi-level surface enhanced Raman scattering using AgOx thin film. Opt. Express 2013, 21, 24460–24467. [Google Scholar] [PubMed] [Green Version]
- Lu, X.Y.; Wan, R.G.; Liu, F.; Zhang, T.Y. High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures. J. Mod. Opt. 2016, 63, 177–183. [Google Scholar]
- Dai, Y.; Xu, H.; Wang, H.; Lu, Y.; Wang, P. Experimental demonstration of high sensitivity for silver rectangular grating-coupled surface plasmon resonance (SPR) sensing. Opt. Commun. 2018, 416, 66–70. [Google Scholar]
- Ameling, R.; Langguth, L.; Hentschel, M.; Meshch, M.; Braun, P.V.; Giessen, H. Cavity-enhanced localized plasmon resonance sensing. Appl. Phys. Lett. 2010, 97, 253116. [Google Scholar]
- Wang, T.J.; Hsu, K.C.; Liu, Y.C.; Lai, C.H.; Chiang, H.P. Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter. J. Opt. 2016, 18, 055006. [Google Scholar]
- Chau, Y.F.; Yeh, H.H.; Tsai, D.P. Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl. Opt. 2008, 47, 5559–5561. [Google Scholar]
- Chou Chau, Y.F.; Chou Chao, C.T.; Chiang, H.P.; Lim, C.M.; Voo, N.Y.; Mahadi, A.H. Plasmonic effects in composite metal nanostructures for sensing applications. J. Nanopart. Res. 2018, 20, 190. [Google Scholar]
- Chou Chau, Y.F.; Lim, C.M.; Lee, C.; Huang, H.J.; Lin, C.T.; Kumara, N.T.R.N.; Voo, N.Y.; Chiang, H.P. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod. J. Appl. Phys. 2016, 120, 093110. [Google Scholar]
- COMSOL Multiphysics Reference Manual. Available online: http://www.comsol.com/ (accessed on 3 October 2018).
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar]
- Palik, E.D. (Ed.) Handbook of Optical Constants of Solids; Academic Press: Boston, MA, USA, 1985. [Google Scholar]
- De Angelis, F.; Malerba, M.; Patrini, M.; Miele, E.; Das, G.; Proietti, R.; Di Fabrizio, E.; Toma, A. 3D hollow nanostructures as building blocks for multifunctional plasmonics. Nano Lett. 2013, 13, 3553–3558. [Google Scholar]
- Lee, G.Y.; Yoon, G.; Lee, S.Y.; Yun, H.; Cho, J.; Lee, K.; Kim, H.; Rho, J.; Lee, B. Complete amplitude and phase control of light using broadband holographic metasurface. Nanoscale 2018, 10, 4237–4245. [Google Scholar] [PubMed] [Green Version]
- Li, X.; Zhu, J.; Wei, B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45, 3145–3187. [Google Scholar]
- Tsuji, M.; Gomi, S.; Maeda, Y.; Matsunaga, M.; Hikino, S.; Uto, K.; Tsuji, T.; Kawazumi, H. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 2012, 28, 8845–8861. [Google Scholar] [PubMed]
- Xu, X.; Yang, Q.; Wattanatorn, N.; Zhao, C.; Chiang, N.; Jonas, S.J.; Weiss, P.S. Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. ACS Nano 2017, 11, 10384–10391. [Google Scholar] [PubMed]
- Seol, M.L.; Im, H.; Moon, D.I.; Woo, J.H.; Kim, D.; Choi, S.J.; Choi, Y.K. Design strategy for a piezoelectric nanogenerator with a well-ordered nanoshell array. ACS Nano 2013, 12, 10773–10779. [Google Scholar]
- Park, Y.B.; Im, M.; Im, H.; Choi, Y.K. Superhydrophobic cylindrical nanoshell array. Langmuir 2010, 26, 7661–7664. [Google Scholar]
- Lindquist, N.C.; Nagpal, P.; McPeak, K.M.; Norris, D.J.; Oh, S.H. Engineering metallic nanostructures for plasmonics and nanophotonics. Rep. Prog. Phys. 2012, 75, 036501. [Google Scholar]
- Engheta, N. Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials. Science 2007, 317, 1698–1702. [Google Scholar]
- Wang, L.P.; Zhang, Z.M. Resonance transmission or absorption in deep gratings explained by magnetic polaritons. Appl. Phys. Lett. 2009, 95, 111904. [Google Scholar]
- Zhu, D.; Bosman, M.; Yang, J.K.W. A circuit model for plasmonic resonators. Opt. Express 2014, 22, 9809–9819. [Google Scholar]
- Huang, C.P.; Yin, X.G.; Huang, H.; Zhu, Y.Y. Study of plasmon resonance in a gold nanorod with an LC circuit model. Opt. Express 2009, 17, 6407–6413. [Google Scholar] [PubMed]
- Chung, H.; Chen, C.; Wu, P.C.; Tseng, M.L.; Lin, W.C.; Chen, C.W.; Chiang, H.P. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods. Nanoscale Res. Lett. 2014, 9, 476. [Google Scholar] [PubMed] [Green Version]
- Chen, Y.; Li, X.; Zhou, H.; Hong, X.; Geng, Y. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating. J. Phys. D Appl. Phys. 2016, 49, 355102. [Google Scholar]
- Goswami, N.; Chauhan, K.K.; Saha, A. Analysis of surface plasmon resonance based bimetal coated tapered fiber optic sensor with enhanced sensitivity through radially polarized light. Opt. Commun. 2016, 379, 6–12. [Google Scholar]
- Elshorbagy, M.H.; Cuadrado, A.; Alda, J. Plasmonic sensor based on dielectric nanoprisms. Nanoscale Res. Lett. 2017, 12, 580. [Google Scholar] [PubMed] [Green Version]
- Liu, G.D.; Zhai, X.; Wang, L.-L.; Lin, Q.; Xia, S.X.; Luo, X.; Zhao, C.J. A high-performance refractive index sensor based on fano resonance in Si split-ring metasurface. Plasmonics 2018, 13, 15–19. [Google Scholar]
- Yu, P.; Wu, J.; Ashalley, E.; Govorov, A.; Wang, Z. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. J. Phys. D Appl. Phys. 2016, 49, 10. [Google Scholar]
- Zhang, Y.B.; Cen, C.L.; Liang, C.P.; Yi, Z.; Chen, X.F.; Li, M.W.; Zhou, Z.G.; Tang, Y.J.; Yi, Y.G.; Zhang, G.F. Dual-band switchable terahertz metamaterial absorber based on metal nanostructure. Results Phys. 2019, 14, 102422. [Google Scholar]
- Chou Chau, Y.F.; Chen, K.H.; Chiang, H.P.; Lim, C.M.; Huang, H.J.; Lai, C.H.; Kumara, N.T.R.N. Fabrication and characterization of a metallic–dielectric nanorod array by nanosphere lithography for plasmonic sensing application. Nanomaterials 2019, 9, 1691. [Google Scholar]
- Ng, R.J.H.; Goh, X.M.; Yang, J.K.W. All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance. Opt. Express 2015, 23, 32597–32605. [Google Scholar]
- Shi, L.; Tang, Q.; Liu, Z.; Liu, Y.; Li, Y.; Liu, G.; Li, L. Tunable dual-band plasmonic perfect absorber and its sensing applications. J. Opt. Soc. Am. B 2019, 36, 2750–2756. [Google Scholar]
- Hu, C.C.; Tsai, Y.T.; Yang, W.; Chau, Y.F. Effective coupling of incident light through an air region into an S-shape plasmonic Ag nanowire waveguide with relatively long propagation length. Plasmonics 2014, 9, 573–579. [Google Scholar]
- Zhang, Y.; Liu, W.; Li, Z.; Li, Z.; Cheng, H.; Chen, S.; Tian, J. Highquality-factor multiple fano resonances for refractive index sensing. Opt. Lett. 2018, 43, 1842–1845. [Google Scholar] [PubMed]
- Wu, F.; Liu, L.; Feng, L.; Xu, D.; Lu, N. Improving the sensing performance of double gold gratings by oblique incident light. Nanoscale 2015, 7, 13026–13032. [Google Scholar]
- Byun, K.M.; Kim, S.J.; Kim, D. Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings. Appl. Opt. 2007, 46, 5703–5708. [Google Scholar]
- Peng, T.C.; Lin, W.C.; Chen, C.W.; Tsai, D.P.; Chiang, H.P. Enhanced Sensitivity of Surface Plasmon Resonance Phase-Interrogation Biosensor by Using Silver Nanoparticles. Plasmonics 2011, 6, 29–34. [Google Scholar]
- Chau, Y.F.C.; Syu, J.Y.; Chao, C.T.C.; Chiang, H.P.; Lim, C.M. Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications. J. Phys. D Appl. Phys. 2016, 50, 045105. [Google Scholar]
- Chau, Y.F.; Jheng, C.Y.; Joe, S.F.; Wang, S.F.; Yang, W.; Jheng, S.C.; Wei, J.H. Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J. Nanopart. Res. 2013, 15, 1424–1429. [Google Scholar]
- Liu, J.; Chen, Y.G.; Gan, L.; Xiao, T.H.; Li, Z.Y. Realization of plasmonic microcavity with full transverse and longitudinal mode selection. Sci. Rep. 2016, 6, 27565. [Google Scholar]
- Chen, Y.G.; Chen, Y.H.; Li, Z.Y. Direct method to control surface plasmon polaritons on metal surfaces. Opt. Lett. 2014, 39, 339–432. [Google Scholar]
- Anders, P.; Sergey, I.B. Plasmonic metasurfaces for efficient phase control in reflection. Opt. Express 2013, 21, 27438–27451. [Google Scholar]
- Hu, X.; Li, J.; Wei, X. Resonant cavity enhanced waveguide transmission for broadband and high efficiency quarter-wave plate. Opt. Express 2017, 25, 29617–29626. [Google Scholar] [PubMed]
- Wu, S.; Zhang, Z.; Zhang, Y.; Zhang, K.; Zhou, L.; Zhang, X.; Zhu, Y. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes. Phys. Rev. Lett. 2013, 110, 207401. [Google Scholar] [PubMed] [Green Version]
- Chou Chau, Y.F.; Jiang, J.C.; Chou Chao, C.T.; Chiang, H.P.; Lim, C.M. Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas. J. Phys. D Appl. Phys. 2016, 49, 475102. [Google Scholar]
- Li, T.; Wang, S.M.; Cao, J.X.; Liu, H.; Zhu, S.N. Cavity-involved plasmonic metamaterial for optical polarization conversion. Appl. Phys. Lett. 2010, 97, 261113. [Google Scholar]
- Huang, Y.W.; Chen, W.T.; Wu, P.C.; Fedotov, V.; Savinov, V.; Ho, Y.Z.; Chau, Y.F.; Zheludev, N.I.; Tsai, D.P. Design of plasmonic toroidal metamaterials at optical frequencies. Opt. Express 2012, 20, 1760–1768. [Google Scholar]
- Chau, Y.F. Surface plasmon effects excited by the dielectric hole in a silver-shell nanospherical pair. Plasmonics 2009, 4, 253–259. [Google Scholar]
- Chiang, H.P.; Lin, J.L.; Chen, Z.W. High sensitivity surface plasmon resonance sensor based on phase interrogation at optimal incident wavelengths. Appl. Phys. Lett. 2006, 88, 141105. [Google Scholar]
- Sarychev, A.; Ivanov, A.; Lagarkov, A.; Barbillon, G. Light concentration by metal-dielectric micro-resonators for SERS sensing. Materials 2019, 12, 103. [Google Scholar]
- Chou Chau, Y.F.; Chou Chao, C.T.; Hung, H.J.; Kumara, N.T.R.N.; Lim, C.M.; Chiang, H.P. Ultra-high refractive index sensing structure based on a metal-insulator-metal waveguide-coupled T-shape cavity with metal nanorod defects. Nanomaterials 2019, 9, 1433. [Google Scholar]
- Cen, C.; Lin, H.; Liang, C.; Huang, J.; Chen, X.; Yi, Z.; Tang, Y.; Duan, T.; Xu, X.; Xiao, S.; et al. Tunable plasmonic resonance absorption characteristics in periodic H-shaped graphene arrays. Superlattices Microstruct. 2018, 120, 427–435. [Google Scholar]
- Amirhosseini, S.A.; safian, R. Graphene-based optical photodetector exploiting hybrid plasmonic waveguide to enhance photo-thermoelectric current. J. Phys. D Appl. Phys. 2017, 50, 335102. [Google Scholar]
- Zhang, T.; Chen, L.; Wang, B.; Li, X. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies. Sci. Rep. 2015, 5, 8443. [Google Scholar]
- Yi, Z.; Liu, M.; Luo, J.S.; Zhao, Y.L.; Zhang, W.B.; Yi, Y.G.; Yi, Y.; Duan, T.; Wang, C.Y.; Tang, Y.J. Multiple surface plasmon resonances of square lattice nanohole arrays in Au-SiO2-Au multilayerfilms. Opt. Commun. 2017, 390, 1–6. [Google Scholar]
- Lu, W.; Liu, J.; Zhang, J.; Wang, J.; Liu, Z. Polarization-independent transparency window induced by complementary graphene metasurfaces. J. Phys. D Appl. Phys. 2016, 50, 015106. [Google Scholar]
- Xiao, B.; Gu, M.; Xiao, S. Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Appl. Opt. 2017, 19, 5458–5462. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou Chau, Y.-F.; Chou Chao, C.-T.; Huang, H.J.; Kooh, M.R.R.; Kumara, N.T.R.N.; Lim, C.M.; Chiang, H.-P. Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination. Nanomaterials 2020, 10, 493. https://doi.org/10.3390/nano10030493
Chou Chau Y-F, Chou Chao C-T, Huang HJ, Kooh MRR, Kumara NTRN, Lim CM, Chiang H-P. Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination. Nanomaterials. 2020; 10(3):493. https://doi.org/10.3390/nano10030493
Chicago/Turabian StyleChou Chau, Yuan-Fong, Chung-Ting Chou Chao, Hung Ji Huang, Muhammad Raziq Rahimi Kooh, N. T. R. N. Kumara, Chee Ming Lim, and Hai-Pang Chiang. 2020. "Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination" Nanomaterials 10, no. 3: 493. https://doi.org/10.3390/nano10030493
APA StyleChou Chau, Y. -F., Chou Chao, C. -T., Huang, H. J., Kooh, M. R. R., Kumara, N. T. R. N., Lim, C. M., & Chiang, H. -P. (2020). Perfect Dual-Band Absorber Based on Plasmonic Effect with the Cross-Hair/Nanorod Combination. Nanomaterials, 10(3), 493. https://doi.org/10.3390/nano10030493