Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of GO from Graphite
2.2.2. Modification of GO Surface with ATRP Initiator (GO-I)
2.2.3. General Procedure for SI-ATRP from GO-I Surface
2.2.4. Methods for GO and GO-g-Polymer Hybrids Characterization
2.2.5. Methods for Electrorheological Suspensions Characterization
2.2.6. Methods for Composites Photo-Actuation Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bockstaller, M.R.; Mickiewicz, R.A.; Thomas, E.L. Block copolymer nanocomposites: Perspectives for tailored functional materials. Adv. Mater. 2005, 17, 1331–1349. [Google Scholar] [CrossRef]
- Grubbs, R.B. Roles of polymer ligands in nanoparticle stabilization. Polym. Rev. 2007, 47, 197–215. [Google Scholar] [CrossRef]
- Balazs, A.C.; Emrick, T.; Russell, T.P. Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Jiang, W.T.; Ye, G.Y.; Lei, B.; Luo, F.; Liu, H.Z.; Lu, B.H. Photothermally triggered soft robot with adaptive local deformations and versatile bending modes. Smart Mater. Struct. 2019, 28, 02LT01. [Google Scholar] [CrossRef]
- Huang, Z.J.; Li, L.; Zhang, X.A.; Alsharif, N.; Wu, X.J.; Peng, Z.W.; Cheng, X.Y.; Wang, P.; Brown, K.A.; Wang, Y.H. Photoactuated Pens for Molecular Printing. Adv. Mater. 2018, 30, 1705303. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Z.B.; Wang, C.; Zarrouk, D.; Seo, J.W.T.; Cheng, J.C.; Buchan, A.D.; Takei, K.; Zhao, Y.; Ager, J.W.; et al. Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nat. Commun. 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Kraus-Ophir, S.; Ben-Shahar, Y.; Banin, U.; Mandler, D. Perpendicular Orientation of Anisotropic Au-Tipped CdS Nanorods at the Air/Water Interface. Adv. Mater. Interfaces 2014, 1, 1300030. [Google Scholar] [CrossRef]
- Lendlein, A.; Sauter, T. Shape-Memory Effect in Polymers. Macromol. Chem. Phys. 2013, 214, 1175–1177. [Google Scholar] [CrossRef]
- Ahir, S.V.; Squires, A.M.; Tajbakhsh, A.R.; Terentjev, E.M. Infrared actuation in aligned polymer-nanotube composites. Phys. Rev. B 2006, 73, 085420. [Google Scholar] [CrossRef] [Green Version]
- Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Doroshenko, M.; Koynov, K.; Danko, M.; Mosnacek, J. Tailoring of viscoelastic properties and light-induced actuation performance of triblock copolymer composites through surface modification of carbon nanotubes. Polymer 2015, 72, 368–377. [Google Scholar] [CrossRef]
- Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Slouf, M.; Zhigunov, A.; Koynov, K.; Mosnacek, J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014, 3, 999–1003. [Google Scholar] [CrossRef]
- Czanikova, K.; Ilcikova, M.; Krupa, I.; Micusik, M.; Kasak, P.; Pavlova, E.; Mosnacek, J.; Chorvat, D.; Omastova, M. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy. Smart Mater. Struct. 2013, 22, 104001. [Google Scholar] [CrossRef]
- Czanikova, K.; Krupa, I.; Ilcikova, M.; Kasak, P.; Chorvat, D.; Valentin, M.; Slouf, M.; Mosnacek, J.; Micusik, M.; Omastova, M. Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics 2012, 6, 063522. [Google Scholar] [CrossRef]
- Liang, X.D.; Zhang, Z.; Sathisha, A.; Cai, S.Q.; Bandaru, P.R. Light induced reversible and irreversible mechanical responses in nanotube-polymer composites. Compos. Part B Eng. 2018, 134, 39–45. [Google Scholar] [CrossRef]
- Ilcikova, M.; Mrlik, M.; Sedlacek, T.; Chorvat, D.; Krupa, I.; Slouf, M.; Koynov, K.; Mosnacek, J. Viscoelastic and photo-actuation studies of composites based on polystyrene-grafted carbon nanotubes and styrene-b-isoprene-b-styrene block copolymer. Polymer 2014, 55, 211–218. [Google Scholar] [CrossRef]
- Li, C.S.; Liu, Y.; Lo, C.W.; Jiang, H.R. Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter 2011, 7, 7511–7516. [Google Scholar] [CrossRef]
- Braun, L.B.; Hessberger, T.; Putz, E.; Muller, C.; Giesselmann, F.; Serra, C.A.; Zentel, R. Actuating thermo- and photo-responsive tubes from liquid crystalline elastomers. J. Mater. Chem. C 2018, 6, 9093–9101. [Google Scholar] [CrossRef]
- Liu, L.; Onck, P.R. Light-driven topographical morphing of azobenzene-doped liquid crystal polymer films via tunable photo-polymerization induced diffusion. J. Mech. Phys. Solids 2019, 123, 247–266. [Google Scholar] [CrossRef]
- Braun, L.B.; Linder, T.G.; Hessberger, T.; Zentel, R. Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System. Polymers 2016, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Wang, D.; Koerner, H.; Vaia, R.A.; Tan, L.; White, T. Photomechanical Response of Pre-strained Azobenzene-Functionalized Polyimide Materials. Macromol. Chem. Phys. 2013, 214, 1189–1194. [Google Scholar] [CrossRef]
- Osicka, J.; Mrlik, M.; Ilcikova, M.; Hanulikova, B.; Urbanek, P.; Sedlacik, M.; Mosnacek, J. Reversible Actuation Ability upon Light Stimulation of the Smart Systems with Controllably Grafted Graphene Oxide with Poly (Glycidyl Methacrylate) and PDMS Elastomer: Effect of Compatibility and Graphene Oxide Reduction on the Photo-Actuation Performance. Polymers 2018, 10, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osicka, J.; Mrlik, M.; Ilcikova, M.; Munster, L.; Bazant, P.; Spitalsky, Z.; Mosnacek, J. Light-Induced Actuation of Poly(dimethylsiloxane) Filled with Graphene Oxide Grafted with Poly(2-(trimethylsilyloxy)ethyl Methacrylate). Polymers 2018, 10, 1059. [Google Scholar] [CrossRef] [Green Version]
- Leeladhar; Singh, J.P. Photomechanical and Chemomechanical Actuation Behavior of Graphene-Poly(dimethylsiloxane)/Gold Bilayer Tube for Multimode Soft Grippers and Volatile Organic Compounds Detection Applications. ACS Appl. Mater. Interfaces 2018, 10, 33956–33965. [Google Scholar] [CrossRef] [PubMed]
- Ahir, S.V.; Huang, Y.Y.; Terentjev, E. Polymers with aligned carbon nanotubes: Active composite materials. Polymer 2008, 49, 3841–3854. [Google Scholar] [CrossRef] [Green Version]
- Loomis, J.; King, B.; Burkhead, T.; Xu, P.; Bessler, N.; Terentjev, E.; Panchapakesan, B. Graphene-nanoplatelet-based photomechanical actuators. Nanotechnology 2012, 23, 045501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuilla, T.; Bhadra, S.; Yao, D.H.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Osicka, J.; Ilcikova, M.; Mrlik, M.; Minarik, A.; Pavlinek, V.; Mosnacek, J. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites. Polymers 2017, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Qi, X.Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Murali, S.; Cai, W.; Li, X.S.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Compton, O.C.; Nguyen, S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef]
- Seyedin, S.; Razal, J.M.; Innis, P.C.; Jalili, R.; Wallace, G.G. Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers. Adv. Mater. Interfaces 2016, 3, 1500672. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Danko, M.; Mosnacek, J. Preparation of Functionalized Graphene Sheets. Curr. Org. Chem. 2011, 15, 1133–1150. [Google Scholar] [CrossRef]
- Yang, J.X.; Liang, H.Y.; Zeng, L.H.; Liu, S.; Guo, T.Y. Facile Fabrication of Superhydrophobic Nanocomposite Coatings Based on Water-Based Emulsion Latex. Adv. Mater. Interfaces 2018, 5, 1800207. [Google Scholar] [CrossRef]
- Pyun, J.; Kowalewski, T.; Matyjaszewski, K. Synthesis of polymer brushes using atom transfer radical polymerization. Macromol. Rapid Commun. 2003, 24, 1043–1059. [Google Scholar] [CrossRef]
- Hui, C.M.; Pietrasik, J.; Schmitt, M.; Mahoney, C.; Choi, J.; Bockstaller, M.R.; Matyjaszewski, K. Surface-Initiated Polymerization as an Enabling Tool for Multifunctional (Nano-)Engineered Hybrid Materials. Chem. Mater. 2014, 26, 745–762. [Google Scholar] [CrossRef]
- Mrlik, M.; Ilcikova, M.; Plachy, T.; Pavlinek, V.; Spitalsky, Z.; Mosnacek, J. Graphene oxide reduction during surface-initiated atom transfer radical polymerization of glycidyl methacrylate: Controlling electro-responsive properties. Chem. Eng. J. 2016, 283, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Ilcikova, M.; Mrlik, M.; Babayan, V.; Kasak, P. Graphene oxide modified by betaine moieties for improvement of electrorheological performance. RSC Adv. 2015, 5, 57820–57827. [Google Scholar] [CrossRef]
- Zhang, W.L.; Choi, H.J. Graphene oxide based smart fluids. Soft Matter 2014, 10, 6601–6608. [Google Scholar] [CrossRef]
- Chen, P.P.; Cheng, Q.Q.; Wang, L.M.; Liu, Y.D.; Choi, H.J. Fabrication of dual-coated graphene oxide nanosheets by polypyrrole and poly(ionic liquid) and their enhanced electrorheological responses. J. Ind. Eng. Chem. 2019, 69, 106–115. [Google Scholar] [CrossRef]
- Mrlik, M.; Pavlinek, V.; Cheng, Q.L.; Saha, P. Synthesis of titanate/polypyrrole composite rod-like particles and the role of conducting polymer on electrorheological efficiency. Int. J. Mod. Phys. B 2012, 26, 1250007. [Google Scholar] [CrossRef]
- Mrlik, M.; Cvek, M.; Osicka, J.; Moucka, R.; Sedlacik, M.; Pavlinek, V. Surface-initiated atom transfer radical polymerization from graphene oxide: A way towards fine tuning of electric conductivity and electro-responsive capabilities. Mater. Lett. 2018, 211, 138–141. [Google Scholar] [CrossRef]
- Mrlik, M.; Ilcikova, M.; Plachy, T.; Moucka, R.; Pavlinek, V.; Mosnacek, J. Tunable electrorheological performance of silicone oil suspensions based on controllably reduced graphene oxide by surface initiated atom transfer radical polymerization of poly(glycidyl methacrylate). J. Ind. Eng. Chem. 2018, 57, 104–112. [Google Scholar] [CrossRef]
- Ji, Y.; Xing, Y.F.; Li, X.Q.; Shao, L.H. Dual-Stimuli Responsive Carbon Nanotube Sponge-PDMS Amphibious Actuator. Nanomaterials 2019, 9, 1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.H.; Piao, S.H.; Choi, H.J. Electric Field-Responsive Mesoporous Suspensions: A Review. Nanomaterials 2015, 5, 2249–2267. [Google Scholar] [CrossRef] [Green Version]
- Kutalkova, E.; Mrlik, M.; Ilcikova, M.; Osicka, J.; Sedlacik, M.; Mosnacek, J. Enhanced and Tunable Electrorheological Capability using Surface Initiated Atom Transfer Radical Polymerization Modification with Simultaneous Reduction of the Graphene Oxide by Silyl-Based Polymer Grafting. Nanomaterials 2019, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Vasile, E.; Pandele, A.M.; Andronescu, C.; Selaru, A.; Dinescu, S.; Costache, M.; Hanganu, A.; Raicopol, M.D.; Teodorescu, M. Hema-Functionalized Graphene Oxide: A Versatile Nanofiller for Poly(Propylene Fumarate)-Based Hybrid Materials. Sci. Rep. 2019, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Davis, L.C. Polarization Forces and Conductivity Effects in Electrorheological Fluids. J. Appl. Phys. 1992, 72, 1334–1340. [Google Scholar] [CrossRef]
- Parthasarathy, M.; Klingenberg, D.J. Electrorheology: Mechanisms and models. Mater. Sci. Eng. R Rep. 1996, 17, 57–103. [Google Scholar] [CrossRef]
- Cvek, M.; Mrlik, M.; Ilcikova, M.; Mosnacek, J.; Munster, L.; Pavlinek, V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules 2017, 50, 2189–2200. [Google Scholar] [CrossRef]
- Krupa, I.; Sobolčiak, P.; Mrlik, M. Smart Non-Woven Fiber Mats with Light-Induced Sensing Capability. Nanomaterials 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osicka, J.; Mrlik, M.; Ilcikova, M.; Krupa, I.; Sobolciak, P.; Plachý, T.; Mosnacek, J. Controllably coated graphene oxide particles with enhanced compatibility with poly (ethylene-co-propylene) thermoplastic elastomer for excellent photo-mechanical actuation capability. React. Funct. Polym. 2020, 148, 104487. [Google Scholar] [CrossRef]
Sample Name | M a | I a | L a | CuBr | Mnb (g mol−1) | Đb | Conversion c (%) |
---|---|---|---|---|---|---|---|
GO-PMMA | 100 | 1 | 4 | 1 | 5620 | 1.18 | 59 |
GO-PBMA | 100 | 1 | 4 | 1 | 5210 | 1.21 | 41 |
GO-PGMA | 100 | 1 | 4 | 1 | 5920 | 1.23 | 53 |
GO-PHEMATMS | 100 | 1 | 4 | 1 | 12,600 | 1.19 | 67 |
Sample Name | Density (g cm−3) | Surface Element Content a | Conductivity (S cm−1) | |||
---|---|---|---|---|---|---|
C | O | Si | C/O | |||
neat GO | 2.68 | 66.7 | 33.3 | 0 | 2.00 | 1.2 × 10−8 |
GO-I | 2.64 | 67.2 | 32.8 | 0 | 2.05 | 1.9 × 10−8 |
GO-PMMA | 2.53 | 69.1 | 30.9 | 0 | 2.24 | 6.3 × 10−8 |
GO-PBMA | 2.34 | 70.9 | 29.1 | 0 | 2.43 | 2.1 × 10−7 |
GO-PGMA | 2.28 | 72.3 | 27.7 | 0 | 2.61 | 3.0 × 10−7 |
GO-PHEMATMS | 2.39 | 73.1 | 24.9 | 2.0 | 2.94 | 6.0 × 10−6 |
Sample Code | q [Pa] | m |
---|---|---|
GO | 7.6 | 1.47 |
GO-PMMA | 20.8 | 1.48 |
GO-PBMA | 24.6 | 1.48 |
GO-PGMA | 28.7 | 1.49 |
GO-PHEMATMS | 41.6 | 1.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zygo, M.; Mrlik, M.; Ilcikova, M.; Hrabalikova, M.; Osicka, J.; Cvek, M.; Sedlacik, M.; Hanulikova, B.; Munster, L.; Skoda, D.; et al. Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites. Nanomaterials 2020, 10, 591. https://doi.org/10.3390/nano10030591
Zygo M, Mrlik M, Ilcikova M, Hrabalikova M, Osicka J, Cvek M, Sedlacik M, Hanulikova B, Munster L, Skoda D, et al. Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites. Nanomaterials. 2020; 10(3):591. https://doi.org/10.3390/nano10030591
Chicago/Turabian StyleZygo, Monika, Miroslav Mrlik, Marketa Ilcikova, Martina Hrabalikova, Josef Osicka, Martin Cvek, Michal Sedlacik, Barbora Hanulikova, Lukas Munster, David Skoda, and et al. 2020. "Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites" Nanomaterials 10, no. 3: 591. https://doi.org/10.3390/nano10030591
APA StyleZygo, M., Mrlik, M., Ilcikova, M., Hrabalikova, M., Osicka, J., Cvek, M., Sedlacik, M., Hanulikova, B., Munster, L., Skoda, D., Urbánek, P., Pietrasik, J., & Mosnáček, J. (2020). Effect of Structure of Polymers Grafted from Graphene Oxide on the Compatibility of Particles with a Silicone-Based Environment and the Stimuli-Responsive Capabilities of Their Composites. Nanomaterials, 10(3), 591. https://doi.org/10.3390/nano10030591