Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2–Ag3PO4 Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Samples
2.2. Characterization
2.3. Photocatalytic Experiments
3. Results
3.1. Structure and Morphology of the Samples
3.2. Optical Properties
3.3. Photocatalytic Activity under UV and Natural Solar Light Irradiations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmad, T.; Farooq, U.; Phul, R. Fabrication and photocatalytic applications of perovskite materials with special emphasis on alkali-metal-based niobates and tantalates. Ind. Eng. Chem. Res. 2017, 57, 18–41. [Google Scholar] [CrossRef]
- Guarisco, C.; Palmisano, G.; Calogero, G.; Ciriminna, R.; Di Marco, G.; Loddo, V.; Pagliaro, M.; Parrino, F. Visible-light driven oxidation of gaseous aliphatic alcohols to the corresponding carbonyls via TiO2 sensitized by a perylene derivative. Environ. Sci. Pollut. Res. 2014, 21, 11135–11141. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elaal, A.; Parrino, F.; Ciriminna, R.; Loddo, V.; Palmisano, L.; Pagliaro, M. Alcohol-selective oxidation in water under mild conditions via a novel approach to hybrid composite photocatalysts. ChemistryOpen 2015, 4, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; He, T.; Guo, L.; Yang, Y.; Guo, L.; Tang, Y.; Cao, Y. Efficient visible-light photocatalytic degradation system assisted by conventional Pd catalysis. Sci. Rep. 2015, 5, 9561. [Google Scholar] [CrossRef] [Green Version]
- Bellardita, M.; El Nazer, H.; Loddo, V.; Parrino, F.; Venezia, A.; Palmisano, L.; El Nazer, H.A. Photoactivity under visible light of metal loaded TiO2 catalysts prepared by low frequency ultrasound treatment. Catal. Today 2017, 284, 92–99. [Google Scholar] [CrossRef]
- Liu, J.; de la Garza, L.; Zhang, L.; Dimitrijevic, N.M.; Zuo, X.; Tiede, D.M.; Rajh, T. Photocatalytic probing of DNA sequence by using TiO2/dopamine-DNA triads. Chem. Phys. 2007, 339, 154–163. [Google Scholar] [CrossRef]
- Carini, G.; Parrino, F.; Palmisano, G.; Scandura, G.; Citro, I.; Calogero, G.; Bartolotta, A.; Di Marco, G. Nanostructured anatase TiO2 densified at high pressure as advanced visible light photocatalysts. Photochem. Photobiol. Sci. 2015, 14, 1685–1693. [Google Scholar] [CrossRef]
- Guo, S.Q.; Hu, Z.; Zhen, M.; Gu, B.; Shen, B.; Dong, F. Insights for optimum cation defects in photocatalysis: A case study of hematite nanostructures. Appl. Catal. B: Environ. 2020, 264, 118506. [Google Scholar] [CrossRef]
- Parrino, F.; Loddo, V.; Augugliaro, V.; Camera-Roda, G.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Heterogeneous photocatalysis: Guidelines on experimental setup, catalyst characterization, interpretation, and assessment of reactivity. Catal. Rev. 2018, 61, 163–213. [Google Scholar] [CrossRef]
- Parrino, F.; García-López, E.; Marcì, G.; Palmisano, L.; Felice, V.; Sora, I.N.; Armelao, L. Cu-substituted lanthanum ferrite perovskites: Preparation, characterization and photocatalytic activity in gas-solid regime under simulated solar light irradiation. J. Alloy. Compd. 2016, 682, 686–694. [Google Scholar] [CrossRef]
- Ye, X.; Chen, Y.; Ling, C.; Zhang, J.; Meng, S.; Fu, X.; Wang, X.; Chen, S. Chalcogenide photocatalysts for selective oxidation of aromatic alcohols to aldehydes using O2 and visible light: A case study of CdIn2S4, CdS and In2S3. Chem. Eng. J. 2018, 348, 966–977. [Google Scholar] [CrossRef]
- Hamrouni, A.; Moussa, N.; Di Paola, A.; Parrino, F.; Houas, A.; Palmisano, L. Characterization and photoactivity of coupled ZnO–ZnWO4 catalysts prepared by a sol–gel method. Appl. Catal. B: Environ. 2014, 154, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Hamrouni, A.; Moussa, N.; Di Paola, A.; Palmisano, L.; Houas, A.; Parrino, F. Photocatalytic activity of binary and ternary SnO2–ZnO–ZnWO4 composites. J. Photochem. Photobiol. A: Chem. 2015, 309, 47–54. [Google Scholar] [CrossRef]
- Hamrouni, A.; Moussa, N.; Parrino, F.; Di Paola, A.; Houas, A.; Palmisano, L. Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 composites. J. Mol. Catal. A: Chem. 2014, 390, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Hamrouni, A.; Lachheb, H.; Houas, A. Synthesis, characterization and photocatalytic activity of ZnO–SnO2 composites. Mater. Sci. Eng. B. 2013, 178, 1371–1379. [Google Scholar] [CrossRef]
- Lachheb, H.; Ajala, F.; Hamrouni, A.; Houas, A.; Parrino, F.; Palmisano, L. Electron transfer in ZnO–Fe2O3 aqueous slurry systems and its effects on visible light photocatalytic activity. Catal. Sci. Technol. 2017, 7, 4041–4047. [Google Scholar] [CrossRef]
- Parrino, F.; Bellardita, M.; García-López, E.I.; Marci, G.; Loddo, V.; Palmisano, L. Heterogeneous photocatalysis for selective formation of high-value-added molecules: Some chemical and engineering aspects. ACS Catal. 2018, 8, 11191–11225. [Google Scholar] [CrossRef]
- Gou, J.; Ma, Q.; Cui, Y.; Deng, X.; Zhang, H.; Cheng, X.; Li, X.; Xie, M.; Cheng, Q.; Liu, H. Visible light photocatalytic removal performance and mechanism of diclofenac degradation by Ag3PO4 sub-microcrystals through response surface methodology. J. Ind. Eng. Chem. 2017, 49, 112–121. [Google Scholar] [CrossRef]
- Seo, Y.; Yeo, B.-E.; Cho, Y.-S.; Park, H.; Kwon, C.; Huh, Y.-D. Photo-enhanced antibacterial activity of Ag3PO4. Mater. Lett. 2017, 197, 146–149. [Google Scholar] [CrossRef]
- Baďurová, K.; Monfort, O.; Satrapinskyy, L.; Dworniczek, E.; Gościniak, G.; Plesch, G. Photocatalytic activity of Ag3PO4 and some of its composites under non-filtered and UV-filtered solar-like radiation. Ceram. Int. 2017, 43, 3706–3712. [Google Scholar] [CrossRef]
- Miyasato, R.; Fujiwara, M.; Sato, H.; Yano, T.; Hashimoto, H. Particle size effects of tetrahedron-shaped Ag3PO4 photocatalyst on water-oxidation activity and carrier recombination dynamics. Chem. Phys. Lett. X 2019, 2, 100023. [Google Scholar] [CrossRef]
- Zwara, J.; Grabowska, E.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynska, A. Shape-dependent enhanced photocatalytic effect under visible light of Ag3PO4 particles. J. Photochem. Photobiol. A: Chem. 2018, 367, 240–252. [Google Scholar] [CrossRef]
- Luo, L.; Li, Y.; Hou, J.; Yang, Y. Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Appl. Surf. Sci. 2014, 319, 332–338. [Google Scholar] [CrossRef]
- Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2011, 112, 1555–1614. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, F.P.A.L. Reactions in the presence of irradiated semiconductors: Are they simply photocatalytic? Mini-Rev. Org. Chem. 2018, 15, 157–164. [Google Scholar]
- Yao, W.; Zhang, B.; Huang, C.; Ma, C.; Song, X.; Xu, Q. Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J. Mater. Chem. 2012, 22, 405–4055. [Google Scholar] [CrossRef]
- Parrino, F.; De Pasquale, C.; Palmisano, L. Influence of surface-related phenomena on mechanism, selectivity, and conversion of TiO2-induced photocatalytic reactions. ChemSusChem 2018, 12, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Rawal, S.B.; Do Sung, S.; Lee, W.I. Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2–propanol under visible-light irradiation. Catal. Commun. 2012, 17, 131–135. [Google Scholar] [CrossRef]
- Teng, W.; Li, X.; Zhao, Q.; Chen, G. Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2–chlorophenol under visible light irradiation. J. Mater. Chem A. 2013, 1, 9060–9068. [Google Scholar] [CrossRef]
- Teng, W.; Li, X.; Zhao, Q.; Zhao, J.; Zhang, D. In situ capture of active species and oxidation mechanism of RhB and MB dyes over sunlight-driven Ag/ Ag3PO4 plasmonic nanocatalyst. Appl. Catal. B: Environ. 2012, 125, 538–545. [Google Scholar] [CrossRef]
- Wu, M.-C.; Chan, S.-H.; Jao, M.-H.; Su, W.-F. Enhanced short-circuit current density of perovskite solar cells using Zn-doped TiO2 as electron transport layer. Sol. Energy Mater. Sol. Cells 2016, 157, 447–453. [Google Scholar] [CrossRef]
- Rtimi, S.; Baghriche, O.; Sanjines, R.; Pulgarin, C.; Bensimon, M.; Kiwi, J. TiON and TiON–Ag sputtered surfaces leading to bacterial inactivation under indoor actinic light. J. Photochem. Photobiol. A: Chem. 2013, 256, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Singh, P.K.; Mahalingam, H. Novel floating Ag+ doped TiO2/polystyrene photocatalysts for the treatment of dye wastewater. Ind. Eng. Chem. Res. 2014, 53, 16332–16340. [Google Scholar] [CrossRef]
- Goei, R.; Lim, T.-T. Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: Photocatalytic and anti-bacterial activities. Water Res. 2014, 59, 207–218. [Google Scholar] [CrossRef]
- Lei, X.; Xue, X.; Yang, H. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Appl. Surf. Sci. 2014, 321, 396–403. [Google Scholar] [CrossRef]
- Mogal, S.I.; Gandhi, V.G.; Mishra, M.K.; Tripathi, S.; Shripathi, T.; Joshi, P.A.; Shah, D.O. Single-step synthesis of silver-doped titanium dioxide: Influence of silver on structural, textural, and photocatalytic properties. Ind. Eng. Chem. Res. 2014, 53, 5749–5758. [Google Scholar] [CrossRef]
- Chang, L.-H.; Cho, C.-P. Enhanced photocatalytic characteristics by Ag-sensitized TiO2 photocatalysts with mixed phases. Mater. Chem. Phys. 2019, 223, 683–693. [Google Scholar] [CrossRef]
- Lutterotti, L.; Ceccato, R.; Maschio, R.D.; Pagani, E. Quantitative analysis of silicate glass in ceramic materials by the rietveld method. Mater. Sci. Forum 1998, 278, 87–92. [Google Scholar] [CrossRef]
- Lutterotti, L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 2010, 268, 334–340. [Google Scholar] [CrossRef]
- Tobaldi, D.M.; Pullar, R.C.; Gualtieri, A.F.; Seabra, M.P.; Labrincha, J.A. Phase composition, crystal structure, and microstructure of silver and tungsten doped TiO2 nanopowders with tunable photochromic behaviour. Acta Mater. 2013, 61, 5571–5585. [Google Scholar] [CrossRef]
- Depero, L.E.; Sangaletti, L.; Allieri, B.; Blasenbauer, D.; Marino, A.; Zocchi, M. Correlation between crystallite sizes and microstrains in TiO2 nanopowders. J. Cryst. Growth 1999, 198, 516–520. [Google Scholar] [CrossRef]
- Ahmad, A.; Thiel, J.; Shah, S.I. Structural effects of niobium and silver doping on titanium dioxide nanoparticles. J. Physics: Conf. Ser. 2007, 61, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Ajala, F.; Hamrouni, A.; Houas, A.; Lachheb, H.; Megna, B.; Palmisano, L.; Parrino, F. The influence of Al doping on the photocatalytic activity of nanostructured ZnO: The role of adsorbed water. Appl. Surf. Sci. 2018, 445, 376–382. [Google Scholar] [CrossRef]
- Dhanabal, R.; Chithambararaj, A.; Velmathi, S.; Bose, A.C. Visible light driven degradation of methylene blue dye using Ag3PO4. J. Environ. Chem. Eng. 2015, 3, 1872–1881. [Google Scholar] [CrossRef]
- Liang, Q.; Ma, W.; Shi, Y.; Li, Z.; Yang, X. Hierarchical Ag3PO4 porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate. CrystEngComm 2012, 14, 2966. [Google Scholar] [CrossRef]
- Tom, R.T.; Nair, A.S.; Singh, N.; Aslam, M.; Nagendra, C.L.; Philip, R.; Vijayamohanan, K.; Pradeep, T. Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2, core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties. Langmuir 2003, 19, 3439–3445. [Google Scholar] [CrossRef]
- Jia, L.; Wu, C.; Li, Y.; Han, S.; Li, Z.; Chi, B.; Pu, J.; Jian, L. Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S coupling. Appl. Phys. Lett. 2011, 98, 211903. [Google Scholar] [CrossRef]
- Yi, Z.; Ye, J.; Kikugawa, N.; Kako, T.; Ouyang, S.; Stuart-Williams, H.; Yang, H.; Cao, J.; Luo, W.; Li, Z.; et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation. Nat. Mater. 2010, 9, 559–564. [Google Scholar] [CrossRef]
- Liu, J.; Fu, X.; Chen, S.F.; Zhu, Y.F. Electronic structure and optical properties of Ag3PO4 photocatalyst calculated by hybrid density functional method. Appl. Phys. Lett. 2011, 99, 191903. [Google Scholar] [CrossRef]
- Dorothy, A.A.; Subramaniam, N.G.; Panigrahi, P.; Subramaniam, G. Tuning electronic and optical properties of TiO2 with Pt/Ag doping to a prospective photocatalyst: A first principles DFT study. Mater. Res. Express 2019, 6, 045913. [Google Scholar] [CrossRef]
- Ji, P.; Takeuchi, M.; Cuong, T.-M.; Zhang, J.; Matsuoka, M.; Anpo, M. Recent advances in visible light-responsive titanium oxide-based photocatalysts. Res. Chem. Intermed. 2010, 36, 327–347. [Google Scholar] [CrossRef]
- Tada, H.; Jin, Q.; Nishijima, H.; Yamamoto, H.; Fujishima, M.; Okuoka, S.-I.; Hattori, T.; Sumida, Y.; Kobayashi, H. Titanium(IV) dioxide surface-modified with iron oxide as a visible light photocatalyst. Angew. Chem. Int. Ed. 2011, 50, 3501–3505. [Google Scholar] [CrossRef] [PubMed]
- Roy, A. Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement. Int. J. Hydrogen Energy 1995, 20, 627–630. [Google Scholar] [CrossRef]
- Li, Y.; Wang, P.; Huang, C.; Yao, W.; Wu, Q.; Xu, Q.-J. Synthesis and photocatalytic activity of ultrafine Ag3PO4 nanoparticles on oxygen vacated TiO2. Appl. Catal. B: Environ. 2017, 205, 489–497. [Google Scholar] [CrossRef]
- Chen, X.; Dai, Y.; Wang, X. Methods and mechanism for improvement of photocatalytic activity and stability of Ag3PO4: A review. J. Alloy. Compd. 2015, 649, 910–932. [Google Scholar] [CrossRef]
- Kisch, H.; Burgeth, G.; Macyk, W. Visible light photocatalysis by a titania transition metal complex. Adv. Inorg. Chem. 2004, 56, 241–259. [Google Scholar]
Samples | a (Å) | b (Å) | c (Å) | D (nm) | ε | SSA (m2∙g−1) | Vp (cm3∙g−1) |
---|---|---|---|---|---|---|---|
Ag3PO4 | 6.0209(1) | 6.0209(1) | 6.0209(1) | 332(8) | - | 0.5 | 0.003 |
TiO2 | 3.7911(3) | 3.791 | 9.523(1) | 26.1(4) | 0.00288(3) | 80 | 0.205 |
Ag@TiO2 | 3.794(1) | 3.794 | 9.499(3) | 23.6(8) | 0.0058(2) | 54 | 0.109 |
TiO2–Ag3PO4 | - | - | - | - | - | 1.9 | 0.005 |
Ag@TiO2–Ag3PO4 | - | - | - | - | - | 1.7 | 0.004 |
kobs∙102 | Ag3PO4 | TiO2 | P25 | Ag@TiO2 | TiO2–Ag3PO4 | Ag@TiO2–Ag3PO4 |
---|---|---|---|---|---|---|
UV light | 6.8 | 8.8 | 15.8 | 10.4 | 11.1 | 12.6 |
Solar light | 6.8 | 3.8 | 0.6 | 5.5 | 13.5 | 26.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamrouni, A.; Azzouzi, H.; Rayes, A.; Palmisano, L.; Ceccato, R.; Parrino, F. Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2–Ag3PO4 Composites. Nanomaterials 2020, 10, 795. https://doi.org/10.3390/nano10040795
Hamrouni A, Azzouzi H, Rayes A, Palmisano L, Ceccato R, Parrino F. Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2–Ag3PO4 Composites. Nanomaterials. 2020; 10(4):795. https://doi.org/10.3390/nano10040795
Chicago/Turabian StyleHamrouni, Abdessalem, Hanen Azzouzi, Ali Rayes, Leonardo Palmisano, Riccardo Ceccato, and Francesco Parrino. 2020. "Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2–Ag3PO4 Composites" Nanomaterials 10, no. 4: 795. https://doi.org/10.3390/nano10040795
APA StyleHamrouni, A., Azzouzi, H., Rayes, A., Palmisano, L., Ceccato, R., & Parrino, F. (2020). Enhanced Solar Light Photocatalytic Activity of Ag Doped TiO2–Ag3PO4 Composites. Nanomaterials, 10(4), 795. https://doi.org/10.3390/nano10040795