Recent Progress of Microwave-Assisted Synthesis of Silica Materials
Abstract
:1. Introduction
2. Microwave-Assisted Synthesis of Silica Mesoporous Materials
2.1. Waste Removal Applications
2.1.1. Mesoporous Materials from Conventional Silicon Sources
2.1.2. Mesoporous Materials from Non-Conventional Silicon Sources
2.2. Catalysis
2.3. Drug Release
2.4. Gas Adsorption
2.5. No Reported Applications
2.5.1. Synthesis Optimization of Siliceous Porous Particles
2.5.2. Silica Materials Containing Heteroatoms
2.5.3. Hybrid Organic–Inorganic Materials
3. Microwave-Assisted Synthesis of Silica Non-Porous Materials
3.1. SiOx-C Materials for Electrical Applications
3.2. Analytical Applications
3.3. No Reported Applications
Coating with Silica
4. Summary and Expectations
Funding
Conflicts of Interest
References
- Bharti, C.; Gulati, N.; Nagaich, U.; Pal, A. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig. 2015, 5, 124–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B.F.; Stucky, G.D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 1998, 120, 6024–6036. [Google Scholar] [CrossRef]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- McCusker, L.B.; Liebau, F.; Engelhardt, G. Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001). Pure Appl. Chem. 2001, 73, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Ning, X.; Lu, Y.; Fu, H.; Wan, H.; Xu, Z.; Zheng, S. Template-mediated Ni(II) dispersion in mesoporous SiO2 for preparation of highly dispersed Ni catalysts: Influence of template type. ACS Appl. Mater. Interfaces 2017, 9, 19335–19344. [Google Scholar] [CrossRef] [PubMed]
- Kesse, S.; Boakye-Yiadom, K.; Ochete, B.; Opoku-Damoah, Y.; Akhtar, F.; Filli, M.; Asim Farooq, M.; Aquib, M.; Maviah Mily, B.; Murtaza, G.; et al. Mesoporous silica nanomaterials: Versatile nanocarriers for cancer theranostics and drug and gene delivery. Pharmaceutics 2019, 11, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido, E.; Alfonso, M.; Díaz de Greñu, B.; Lozano-Torres, B.; Parra, M.; Gaviña, P.; Marcos, M.D.; Martínez-Máñez, R.; Sancenón, F. Nanosensor for sensitive detection of the new psychedelic Drug 25I-NBOMe. Chem. A Eur. J. 2020, 26, 2813–2816. [Google Scholar] [CrossRef]
- Wongsakulphasatch, S.; Kiatkittipong, W.; Saiswat, J.; Oonkhanond, B.; Striolo, A.; Assabumrungrat, S. The adsorption aspect of Cu2+ and Zn2+ on MCM-41 and SDS-modified MCM-41. Inorg. Chem. Commun. 2014, 46, 301–304. [Google Scholar] [CrossRef]
- Slowing, I.I.; Vivero-Escoto, J.L.; Trewyn, B.G.; Lin, V.S.-Y. Mesoporous silica nanoparticles: Structural design and applications. J. Mater. Chem. 2010, 20, 7924. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Liu, S.; Deng, L.; Mahmood, N.; Jian, X. Synthesis and growth mechanism of various SiO2 nanostructures from straight to helical morphologies. Compos. Part B Eng. 2018, 149, 92–98. [Google Scholar] [CrossRef]
- Newalkar, B.L.; Komarneni, S.; Katsuki, H. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave–hydrothermal process. Chem. Commun. 2000, 2389–2390. [Google Scholar] [CrossRef]
- Newalkar, B.L.; Olanrewaju, J.; Komarneni, S. Direct synthesis of titanium-substituted mesoporous SBA-15 molecular sieve under microwave−hydrothermal conditions. Chem. Mater. 2001, 13, 552–557. [Google Scholar] [CrossRef]
- Hwang, Y.K.; Chang, J.-S.; Kwon, Y.-U.; Park, S.-E. Microwave synthesis of cubic mesoporous silica SBA-16. Microporous Mesoporous Mater. 2004, 68, 21–27. [Google Scholar] [CrossRef]
- Celer, E.B.; Jaroniec, M. Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica. J. Am. Chem. Soc. 2006, 128, 14408–14414. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Eugene, W.W.L. Microwaves—Theory. In Microwaves and Metals; John Wiley & Sons (Asia) Pte Ltd.: Singapore, 2011; pp. 25–41. [Google Scholar]
- Peng, Z.; Hwang, J.-Y.; Andriese, M. Magnetic loss in microwave heating. Appl. Phys. Express 2012, 5, 027304. [Google Scholar] [CrossRef]
- Jian, X.; Tian, W.; Li, J.; Deng, L.; Zhou, Z.; Zhang, L.; Lu, H.; Yin, L.; Mahmood, N. High-temperature oxidation-resistant ZrN0.4B0.6/SiC nanohybrid for enhanced microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 15869–15880. [Google Scholar] [CrossRef]
- Guo, Y.; Jian, X.; Zhang, L.; Mu, C.; Yin, L.; Xie, J.; Mahmood, N.; Dou, S.; Che, R.; Deng, L. Plasma-induced FeSiAl@Al2O3@SiO2 core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. 2020, 384, 123371. [Google Scholar] [CrossRef]
- Schanche, J.-S. Microwave synthesis solutions from personal chemistry. Mol. Divers. 2003, 7, 291–298. [Google Scholar] [CrossRef]
- Kappe, C.O.; Dallinger, D. Controlled microwave heating in modern organic synthesis: Highlights from the 2004–2008 literature. Mol. Divers. 2009, 13, 71–193. [Google Scholar] [CrossRef] [PubMed]
- Oliver Kappe, C. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev. 2008, 37, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Sansano, M.; De los Reyes, R.; Andrés, A.; Heredia, A. Effect of microwave frying on acrylamide generation, mass transfer, color, and texture in french fries. Food Bioprocess Technol. 2018, 11, 1934–1939. [Google Scholar] [CrossRef]
- Wei, R.; Wang, P.; Zhang, G.; Wang, N.; Zheng, T. Microwave-responsive catalysts for wastewater treatment: A review. Chem. Eng. J. 2020, 382, 122781. [Google Scholar] [CrossRef]
- Rattanadecho, P.; Makul, N. Microwave-assisted drying: A review of the state-of-the-art. Dry. Technol. 2016, 34, 1–38. [Google Scholar] [CrossRef]
- Mirzaei, A.; Neri, G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review. Sensors Actuators B Chem. 2016, 237, 749–775. [Google Scholar] [CrossRef]
- Dąbrowska, S.; Chudoba, T.; Wojnarowicz, J.; Łojkowski, W. Current trends in the development of microwave reactors for the synthesis of nanomaterials in laboratories and industries: A review. Crystals 2018, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Park, S.-J. Conventional and microwave hydrothermal synthesis and application of functional materials: A review. Materials 2019, 12, 1177. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, M. Microwave-assisted synthesis of metallic nanomaterials in liquid phase. ChemistrySelect 2017, 2, 805–819. [Google Scholar] [CrossRef]
- Khan, N.A.; Jhung, S.H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 2015, 285, 11–23. [Google Scholar] [CrossRef]
- Ebner, C.; Bodner, T.; Stelzer, F.; Wiesbrock, F. One decade of microwave-assisted polymerizations: Quo vadis? Macromol. Rapid Commun. 2011, 32, 254–288. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-S.; Huang, H.; Zhou, Y.-J.; Zhang, C.-Y.; Li, Z.-T. Research progress of graphene-based microwave absorbing materials in the last decade. J. Mater. Res. 2017, 32, 1213–1230. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, H.; Xia, Z. Advances in microwave assisted synthesis of ordered mesoporous materials. Trans. Nonferrous Met. Soc. China 2009, 19, s656–s664. [Google Scholar] [CrossRef]
- Park, S.-E.; Chang, J.-S.; Hwang, Y.K.; Kim, D.S.; Jhung, S.H.; Hwang, J.S. Supramolecular interactions and morphology control in microwave synthesis of nanoporous materials. Catal. Surv. Asia 2004, 8, 91–110. [Google Scholar] [CrossRef]
- Tompsett, G.A.; Conner, W.C.; Yngvesson, K.S. Microwave synthesis of nanoporous materials. ChemPhysChem 2006, 7, 296–319. [Google Scholar] [CrossRef]
- Nithya, T.; Kavitha, P.; Karthik, P.; Anpo, M.; Neppolian, B. The microwave-assisted synthesis of silica-based materials and their photocatalysis. In Chemistry of Silica and Zeolite-Based Materials; Elsevier: Amsterdam, The Netherlands, 2019; pp. 73–88. [Google Scholar]
- Feng, S.; Xu, R. New materials in hydrothermal synthesis. Acc. Chem. Res. 2001, 34, 239–247. [Google Scholar] [CrossRef]
- Zhong, H.; Mirkovic, T.; Scholes, G.D. Nanocrystal synthesis. In Comprehensive Nanoscience and Technology; Elsevier: Amsterdam, The Netherlands, 2011; pp. 153–201. [Google Scholar]
- Zhu, Y.-J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 2014, 114, 6462–6555. [Google Scholar] [CrossRef]
- Ma, B.; Zhuang, L.; Chen, S. Rapid synthesis of tunable-structured short-pore SBA-15 and its application on CO2 capture. J. Porous Mater. 2016, 23, 529–537. [Google Scholar] [CrossRef]
- Hung, C.-T.; Yang, C.-F.; Lin, J.-S.; Huang, S.-J.; Chang, Y.-C.; Liu, S.-B. Capture of carbon dioxide by polyamine-immobilized mesostructured silica: A solid-state NMR study. Microporous Mesoporous Mater. 2017, 238, 2–13. [Google Scholar] [CrossRef]
- Inada, M.; Enomoto, N.; Hojo, J. Synthesis and photocatalytic activity of mesoporous SiO2–TiO2. Res. Chem. Intermed. 2010, 36, 115–120. [Google Scholar] [CrossRef]
- Wei, H.J.; Cao, Y.; Liu, B.L.; Wang, X.; Xu, Y.Q. Decoloration of methylene blue via mesoporous silica microspheres doped with TiO2. Adv. Mater. Res. 2011, 236–238, 2166–2171. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, D.S.; Liu, M.S.; Li, J.P. The synthesis and characterization of Ti-MCM-41 by microwave radiation. Adv. Mater. Res. 2012, 557–559, 1411–1414. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Aazam, E.S. Synthesis and characterization of CeO2-SiO2 nanoparticles by microwave-assisted irradiation method for photocatalytic oxidation of methylene blue dye. Int. J. Photoenergy 2012, 2012, 1–9. [Google Scholar]
- Jeong, E.-Y.; Burri, A.; Lee, S.-Y.; Park, S.-E. Synthesis and catalytic behavior of tetrakis(4-carboxyphenyl) porphyrin-periodic mesoporous organosilica. J. Mater. Chem. 2010, 20, 10869. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Amira, M.F.; Zaghloul, A.A.; Ibrahim, G.A.A. Microwave-enforced sorption of heavy metals from aqueous solutions on the surface of magnetic iron oxide-functionalized-3-aminopropyltriethoxysilane. Chem. Eng. J. 2016, 293, 200–206. [Google Scholar] [CrossRef]
- Kiseleva, M.S.; Pryazhnikov, D.V.; Kubrakova, I.V. Magnetic sorbent with a mesoporous shell for the simultaneous preconcentration of ecotoxicants of different nature. J. Anal. Chem. 2018, 73, 10–17. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Wu, D.; Li, X.; Luo, Y.; Han, C.; Ma, W.; He, S. Investigating the heavy metal adsorption of mesoporous silica materials prepared by microwave synthesis. Nanoscale Res. Lett. 2017, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Zhang, L.; An, X.; Han, C.; Luo, Y. Microwave assistant rapid synthesis MCM-41-NH2 from fly ash and Cr(VI) removal performance. Environ. Sci. Pollut. Res. 2019, 26, 31463–31477. [Google Scholar] [CrossRef] [PubMed]
- Zaki, T.; Samy, M.; Temraz, M.G. Synthesis and characterization of nano-silica gel aged under microwave radiation from white sandstone. J. Sol-Gel Sci. Technol. 2012, 64, 224–231. [Google Scholar] [CrossRef]
- Peres, E.C.; Slaviero, J.C.; Cunha, A.M.; Hosseini–Bandegharaei, A.; Dotto, G.L. Microwave synthesis of silica nanoparticles and its application for methylene blue adsorption. J. Environ. Chem. Eng. 2018, 6, 649–659. [Google Scholar] [CrossRef]
- Prasetyanto, E.A.; Jeong, S.-M.; Park, S.-E. Asymmetric catalysis in confined space provided by l-proline functionalized mesoporous silica with plugs in the pore. Top. Catal. 2010, 53, 192–199. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Qian, E.W. Synthesis of mesoporous Ti-inserted SBA-15 and CoMo/Ti-SBA-15 catalyst for hydrodesulfurization and hydrodearomatization. Microporous Mesoporous Mater. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Wang, S.; Shi, Y.; Ma, X. Microwave synthesis, characterization and transesterification activities of Ti-MCM-41. Microporous Mesoporous Mater. 2012, 156, 22–28. [Google Scholar] [CrossRef]
- Kamarudin, N.H.N.; Jalil, A.A.; Triwahyono, S.; Artika, V.; Salleh, N.F.M.; Karim, A.H.; Jaafar, N.F.; Sazegar, M.R.; Mukti, R.R.; Hameed, B.H.; et al. Variation of the crystal growth of mesoporous silica nanoparticles and the evaluation to ibuprofen loading and release. J. Colloid Interface Sci. 2014, 421, 6–13. [Google Scholar] [CrossRef]
- Dündar-Tekkaya, E.; Yürüm, Y. Synthesis of palladium incorporated MCM-41 via microwave irradiation and investigation of its hydrogen storage properties. Int. J. Hydrogen Energy 2016, 41, 9828–9833. [Google Scholar] [CrossRef]
- Wu, C.-G.; Bein, T. Microwave synthesis of molecular sieve MCM-41. Chem. Commun. 1996, 8, 925. [Google Scholar] [CrossRef]
- Deekamwong, K.; Kaiyasuan, C.; Jitcharoen, J.; Wittayakun, J. Influence of gel composition and microwave-assisted hydrothermal time in MCM-41 synthesis. Mater. Chem. Phys. 2017, 201, 384–390. [Google Scholar] [CrossRef]
- Ergün, A.N.; Kocabaş, Z.Ö.; Baysal, M.; Yürüm, A.; Yürüm, Y. Synthesis of mesoporous MCM-41 materials with low-power microwave heating. Chem. Eng. Commun. 2013, 200, 1057–1070. [Google Scholar] [CrossRef]
- Deekamwong, K.; Wittayakun, J. Template removal by ion-exchange extraction from siliceous MCM-41 synthesized by microwave-assisted hydrothermal method. Microporous Mesoporous Mater. 2017, 239, 54–59. [Google Scholar] [CrossRef]
- Chaignon, J.; Bouizi, Y.; Davin, L.; Calin, N.; Albela, B.; Bonneviot, L. Minute-made and low carbon fingerprint microwave synthesis of high quality templated mesoporous silica. Green Chem. 2015, 17, 3130–3140. [Google Scholar] [CrossRef]
- Benamor, T.; Vidal, L.; Lebeau, B.; Marichal, C. Influence of synthesis parameters on the physico-chemical characteristics of SBA-15 type ordered mesoporous silica. Microporous Mesoporous Mater. 2012, 153, 100–114. [Google Scholar] [CrossRef]
- Grabicka, B.E.; Jaroniec, M. Adsorption properties of ordered mesoporous silicas synthesized in the presence of block copolymer Pluronic F127 under microwave irradiation. Adsorption 2010, 16, 385–396. [Google Scholar] [CrossRef]
- Cides da Silva, L.C.; dos Reis, T.V.S.; Cosentino, I.C.; Fantini, M.C.A.; Matos, J.R.; Bruns, R.E. Factorial design to optimize microwave-assisted synthesis of FDU-1 silica with a new triblock copolymer. Microporous Mesoporous Mater. 2010, 133, 1–9. [Google Scholar] [CrossRef]
- Jiang, T.S.; Li, Y.H.; Zhou, X.P.; Zhao, Q.; Yin, H.B. Thermal and hydrothermal stability of ZrMCM-41 mesoporous molecular sieves obtained by microwave irradiation. J. Chem. Sci. 2010, 122, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Dudarko, O.A.; Gunathilake, C.; Sliesarenko, V.V.; Zub, Y.L.; Jaroniec, M. Microwave-assisted and conventional hydrothermal synthesis of ordered mesoporous silicas with P-containing functionalities. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 459, 4–10. [Google Scholar] [CrossRef]
- Smeulders, G.; Van Oers, C.J.; Van Havenbergh, K.; Houthoofd, K.; Mertens, M.; Martens, J.A.; Bals, S.; Maes, B.U.W.; Meynen, V.; Cool, P. Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas. Chem. Eng. J. 2011, 175, 585–591. [Google Scholar] [CrossRef]
- Domingues, E.M.; Bion, N.; Figueiredo, F.M.; Ferreira, P. Tuning the acid content of propylsulfonic acid-functionalized mesoporous benzene-silica by microwave-assisted synthesis. Microporous Mesoporous Mater. 2016, 226, 386–395. [Google Scholar] [CrossRef]
- De Conto, J.F.; Oliveira, M.R.; Oliveira, M.M.; Brandão, T.G.; Campos, K.V.; Santana, C.C.; Egues, S.M. One-pot synthesis and modification of silica nanoparticles with 3-chloropropyl-trimethoxysilane assisted by microwave irradiation. Chem. Eng. Commun. 2018, 205, 533–537. [Google Scholar] [CrossRef]
- De Conto, J.F.; Oliveira, M.R.; Oliveira, R.J.; Campos, K.V.; De Menezes, E.W.; Benvenutti, E.V.; Franceschi, E.; Santana, C.C.; Egues, S.M. Synthesis of silica modified with 1-methylimidazolium chloride by sol-gel method: A comparison between microwave radiation-assisted and conventional methods. J. Non. Cryst. Solids 2017, 471, 209–214. [Google Scholar] [CrossRef]
- Izawa, T.; Arif, A.F.; Taniguchi, S.; Kamikubo, K.; Iwasaki, H.; Ogi, T. Improving the performance of Li-ion battery carbon anodes by in-situ immobilization of SiOx nanoparticles. Mater. Res. Bull. 2019, 112, 16–21. [Google Scholar] [CrossRef]
- Anh Cao, K.L.; Arif, A.F.; Kamikubo, K.; Izawa, T.; Iwasaki, H.; Ogi, T. Controllable synthesis of carbon-coated SiOx particles through a simultaneous reaction between the hydrolysis–condensation of tetramethyl orthosilicate and the polymerization of 3-aminophenol. Langmuir 2019, 35, 13681–13692. [Google Scholar] [CrossRef] [PubMed]
- Arif, A.F.; Taniguchi, S.; Izawa, T.; Kamikubo, K.; Iwasaki, H.; Ogi, T. Microwave-assisted synthesis of C/SiO2 composite with controllable silica nanoparticle size. ACS Omega 2018, 3, 4063–4069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, N.-H.; Wu, Y.-S.; Chou, J.; Wu, H.-C.; Wu, N.-L. Silicon oxide-on-graphite planar composite synthesized using a microwave-assisted coating method for use as a fast-charging lithium-ion battery anode. J. Power Sources 2015, 296, 314–317. [Google Scholar] [CrossRef]
- Choi, S.; Yang, J.; Kim, Y.; Nam, J.; Kim, K.; Shim, S.E. Microwave-accelerated synthesis of silica nanoparticle-coated graphite nanoplatelets and properties of their epoxy composites. Compos. Sci. Technol. 2014, 103, 8–15. [Google Scholar] [CrossRef]
- Ahmed, A.; Ritchie, H.; Myers, P.; Zhang, H. One-pot synthesis of spheres-on-sphere silica particles from a single precursor for fast HPLC with low back pressure. Adv. Mater. 2012, 24, 6042–6048. [Google Scholar] [CrossRef]
- Ahmed, A.; Abdelmagid, W.; Ritchie, H.; Myers, P.; Zhang, H. Investigation on synthesis of spheres-on-sphere silica particles and their assessment for high performance liquid chromatography applications. J. Chromatogr. A 2012, 1270, 194–203. [Google Scholar] [CrossRef]
- Lovingood, D.D.; Owens, J.R.; Seeber, M.; Kornev, K.G.; Luzinov, I. Controlled microwave-assisted growth of silica nanoparticles under acid catalysis. ACS Appl. Mater. Interfaces 2012, 4, 6875–6883. [Google Scholar] [CrossRef]
- Lovingood, D.D.; Owens, J.R.; Seeber, M.; Kornev, K.G.; Luzinov, I. Preparation of silica nanoparticles through microwave-assisted acid-catalysis. J. Vis. Exp. 2013, 82, e51022. [Google Scholar] [CrossRef] [Green Version]
- Park, J.C.; Gilbert, D.A.; Liu, K.; Louie, A.Y. Microwave enhanced silica encapsulation of magnetic nanoparticles. J. Mater. Chem. 2012, 22, 8449–8454. [Google Scholar] [CrossRef] [Green Version]
- Karimipour, M.; Shabani, E.; Mollaei, M.; Molaei, M. Microwave synthesis of Ag@SiO2 core–shell using oleylamine. J. Nanoparticle Res. 2015, 17, 2. [Google Scholar] [CrossRef]
- Bahadur, N.M.; Watanabe, S.; Furusawa, T.; Sato, M.; Kurayama, F.; Siddiquey, I.A.; Kobayashi, Y.; Suzuki, N. Rapid one-step synthesis, characterization and functionalization of silica coated gold nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 392, 137–144. [Google Scholar] [CrossRef]
- Widoniak, J.; Eiden-Assmann, S.; Maret, G. Synthesis and characterisation of monodisperse zirconia particles. Eur. J. Inorg. Chem. 2005, 2005, 3149–3155. [Google Scholar] [CrossRef]
- Siddiquey, I.A.; Furusawa, T.; Sato, M.; Bahadur, N.M.; Uddin, M.N.; Suzuki, N. A rapid method for the preparation of silica-coated ZrO2 nanoparticles by microwave irradiation. Ceram. Int. 2011, 37, 1755–1760. [Google Scholar] [CrossRef]
- Wei, G.; Qin, W.; Zhu, P.; Kim, R.; Wang, G.; Zhang, D.; Zheng, K.; Wang, L. Large-scale synthesis and photoluminescence properties of aligned multicore SiC–SiO2 nanocables. J. Nanosci. Nanotechnol. 2010, 10, 1964–1968. [Google Scholar] [CrossRef] [PubMed]
Ref. | Solid | BET (m2 g−1) | Pore Size (nm) | Particle Size | Si Source | Surf. | Temp. (°C) | Power (W) | Time (min) |
---|---|---|---|---|---|---|---|---|---|
[41] | SSBA-15 | 573 | 9.97 | 450 ± 50a nm | TEOS | P123 | n.a. | n.a. | 120 |
[42] | SBA-15-NH2 | 128 | n.a. | n.a. | TEOS | P123 | 80 | n.a. | 420 |
[43] | Ti-SiO2 | n.a. | 3.40 | 0.1–20a µm | TEOS | STAC | 60 | n.a. | 30 |
[44] | SiO2-TiO2 | 653 | 2.15 | 1.3a µm | TEOS | CTAB | n.a. | 120 | 90 |
[45] | Ti-MCM-41 | 933 | 2.81 | 4–8a µm | TEOS | CTAB | n.a. | 210 | 40 |
[46] | CeO2-SiO2 | 335 | n.a. | 8b | TEOS | CTAB | 160 | 30 | |
[47] | PMO | 493 | 8.70 | n.a. | SS | P123 | 100 | 300 | 120 |
[48] | Fe3O4-SiO2 | 308 | 6.14 | 4.7–9.1b nm | SS | None | 80 | n.a. | 10 |
[49] | Fe3O4-SiO2 | n.a. | n.a. | n.a. | TEOS | CTAB | 15 | n.a. | 90 |
[50] | MCM-41 | 1254 | 3.60 | n.a. | SF | CTAB | n.a. | n.a. | 40 |
[51] | MCM-41-NH2 | 258 | 3.25 | n.a. | FA | CTAB | n.a. | n.a. | 30 |
[52] | SiO2 | 204 | 21 | 16–28b nm | Sand | None | n.a. | 100 | 0.5 |
[53] | SiO2 | 85 | 9.84 | 93a nm | RH | None | 80 | n.a. | 30 |
Ref. | Solid | BET (m2 g−1) | Pore Size (nm) | Particle Size (nm) | Si Source | Surf. | Temp. (°C) | Power (W) | Time (min) |
---|---|---|---|---|---|---|---|---|---|
[54] | Proline-SiO2 | 727 | 5.60 | n.a. | SS | P123 | 100 | 300 | 120 |
[55] | Ti-SBA-15 | 718 | 5.41 | n.a. | TEOS | P123 | 90 | 200 | 60 |
[56] | Ti-MCM-41 | 882 | 2.80 | n.a. | TEOS | CTAB | 120 | n.a. | 40 |
[57] | SiO2 | 817 | 3.13 | 30−45b | TEOS | CTAB | n.a. | 450 | 60 |
[58] | Pd-MCM-41 | 1516 | 2.49 | n.a. | SS | CTAB | n.a. | 120 | 30 |
Ref. | Solid | BET (m2 g−1) | Pore Size (nm) | Particle Size (nm) | Si Source | Surf. | Temp. (°C) | Power (W) | Time (min) |
---|---|---|---|---|---|---|---|---|---|
[60] | MCM-41 | 1138 | 3.21 | n.a. | SG | CTAB | 100 | 1200 | 90 |
[61] | MCM-41 | 1438 | 4.00 | 70a | SS | CTAB | 120 | 120 | 30 |
[62] | MCM-41 | 1138 | n.a. | n.a. | SG | CTAB | 100 | 1200 | 90 |
[63] | MCM-41 | 980 | 3.70 | n.a. | SS | CTAT | 190 | 1450 | 2 |
[64] | SBA-15 | 900 | 6.50 | n.a. | TEOS | P123 | 90 | n.a. | 120 |
[65] | SBA-16 | 866 | 9.00 | n.a. | TEOS | F127 | 100 | n.a. | 300 |
[66] | FDU-1 | 622 | 8.50 | n.a. | TEOS | V504 | 100 | n.a. | 60 |
[67] | Zr-SiO2 | 830 | 2.47 | n.a. | SS | CTAB | Reflux | 220 | 150 |
[68] | P-SBA-15 | 705 | 8.5 | n.a. | SS | P123 | 100 | n.a. | 600 |
[69] | PMO | 957 | 2.40 | n.a. | BTEB | CTAB | 100 | 400 | 180 |
[70] | PMO | 857 | 3.15 | 629a | BTEB / MPTMS | STAB | 100 | 1200 | 180 |
[71,72] | SiO2-Cl SiO2-Im | n.a. | n.a. | n.a. | TEOS | None | 40 | 300 | 60 |
Ref. | Solid | Particle Size | Si Source | Temp. (°C) | Power (W) | Time (min) |
---|---|---|---|---|---|---|
[73] | C/SiOx | n.a. | TEOS | 80 | n.a. | 60 |
[74] | SiOx@C | n.a. | TMOS | 40 | n.a. | 15 |
[76] | GF@SiO2 | 8b nm | Siloxanes | n.a. | 300 | 15 |
[77] | SiO2-GNP | 20–30a nm | TEOS | 70 | 1000 | 5 |
[79] | SOS | 5a µm | MPTMS | 40 | 200 | 5 |
[80,81] | SiO2 | n.a. | TMOS | 125 | 65 | 1 |
[82] | MN@SiO2 | 131–167b nm | TEOS | 70 | 200 | 10 |
[83] | Ag@SiO2 | 50–200b nm | TEOS | n.a. | 360 | 10 |
[84] | Au@SiO2 | 5–105b nm | TEOS | 50 | n.a. | 5 |
[86] | ZrO2@SiO2 | 2b nm | TEOS | 70 | n.a. | 2 |
[87] | SiC@SiO2 | n.a. | Si, SiO2 | n.a. | 800 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz de Greñu, B.; de los Reyes, R.; Costero, A.M.; Amorós, P.; Ros-Lis, J.V. Recent Progress of Microwave-Assisted Synthesis of Silica Materials. Nanomaterials 2020, 10, 1092. https://doi.org/10.3390/nano10061092
Díaz de Greñu B, de los Reyes R, Costero AM, Amorós P, Ros-Lis JV. Recent Progress of Microwave-Assisted Synthesis of Silica Materials. Nanomaterials. 2020; 10(6):1092. https://doi.org/10.3390/nano10061092
Chicago/Turabian StyleDíaz de Greñu, Borja, Ruth de los Reyes, Ana M. Costero, Pedro Amorós, and Jose Vicente Ros-Lis. 2020. "Recent Progress of Microwave-Assisted Synthesis of Silica Materials" Nanomaterials 10, no. 6: 1092. https://doi.org/10.3390/nano10061092
APA StyleDíaz de Greñu, B., de los Reyes, R., Costero, A. M., Amorós, P., & Ros-Lis, J. V. (2020). Recent Progress of Microwave-Assisted Synthesis of Silica Materials. Nanomaterials, 10(6), 1092. https://doi.org/10.3390/nano10061092