Facile Chemical Synthesis of Doped ZnO Nanocrystals Exploiting Oleic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sol–Gel Synthesis of Undoped and Gadolinum and Manganese Doped ZnO-NCs (ZnO, ZnO–GdX, ZnO–MnX)
2.3. Coprecipitation Method to Synthesize Undoped and Doped Oleate-stabilized ZnO-NCs (Ol-ZnO, Ol-ZnO–GdX, Ol-ZnO–MnX)
2.4. Characterization
3. Results and Discussion
3.1. Morphological and Structural Characterization
3.2. Optical and Magnetic Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Garino, N.; Limongi, T.; Dumontel, B.; Canta, M.; Racca, L.; Laurenti, M.; Castellino, M.; Casu, A.; Falqui, A.; Cauda, V. A microwave-assisted synthesis of zinc oxide nanocrystals finely tuned for biological applications. Nanomaterials 2019, 9, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.Y.; Xiong, H.M. Photoluminescent ZnO nanoparticles and their biological applications. Materials 2015, 8, 3101. [Google Scholar] [CrossRef]
- Cieślak, A.M.; Pavliuk, M.V.; D’Amario, L.; Abdellah, M.; Sokołowski, K.; Rybinska, U.; Fernandes, D.L.A.; Leszczyński, M.K.; Mamedov, F.; El-Zhory, A.M.; et al. Ultra long-lived electron-hole separation within water-soluble colloidal ZnO nanocrystals: Prospective applications for solar energy production. Nano Energy 2016, 30, 187–192. [Google Scholar] [CrossRef]
- Racca, L.; Canta, M.; Dumontel, B.; Ancona, A.; Limongi, T.; Garino, N.; Laurenti, M.; Canavese, G.; Cauda, V. Zinc oxide nanostructures in biomedicine. In Smart Nanoparticles for Biomedicine; Ciofani, G., Ed.; Elsevier: Amsterdam, The Netherland, 2018; pp. 171–187. [Google Scholar]
- Zhang, Y.; Nayak, T.R.; Hong, H.; Cai, W. Biomedical applications of zinc oxide nanomaterials. Curr. Mol. Med. 2013, 13, 1633–1645. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. 2018, 2018, 1062562. [Google Scholar] [CrossRef]
- Hong, H.; Shi, J.; Yang, Y.; Zhang, Y.; Engle, J.W.; Nickles, R.J.; Wang, X.; Cai, W. Cancer-targeted optical imaging with fluorescent zinc oxide nanowires. Nano Lett. 2011, 11, 3744–3750. [Google Scholar] [CrossRef] [Green Version]
- Hernández, S.; Hidalgo, D.; Sacco, A.; Chiodoni, A.; Lamberti, A.; Cauda, V.; Tresso, E.; Saracco, G. Comparison of photocatalytic and transport properties of TiO2 and zno nanostructures for solar-driven water splitting. Phys. Chem. Chem. Phys. 2015, 17, 7775–7786. [Google Scholar] [CrossRef] [Green Version]
- Pearton, S.J.; Norton, D.P.; Ivill, M.P.; Hebard, A.F.; Zavada, J.M.; Chen, W.M.; Buyanova, I.A. Ferromagnetism in transition-metal doped ZnO. J. Electron. Mater. 2007, 36, 462–471. [Google Scholar] [CrossRef]
- Laurenti, M.; Canavese, G.; Sacco, A.; Fontana, M.; Bejtka, K.; Castellino, M.; Pirri, C.F.; Cauda, V. Nanobranched ZnO structure: P-type doping induces piezoelectric voltage generation and ferroelectric-photovoltaic effect. Adv. Mater. 2015, 27, 4218–4223. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Cai, C.; Zhou, S.; Liu, W. Structure, photoluminescence, and magnetic properties of Co-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 12917–12926. [Google Scholar] [CrossRef]
- Xue, S.; Zhang, F.; Zhang, S.; Wang, X.; Shao, T. Electronic and magnetic properties of Ni-doped zinc-blende ZnO: A first-principles study. Nanomaterials 2018, 8, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Lee, W.T.; Xing, G.; Bao, N.; Yonis, A.; Chu, D.; Lee, J.; Ding, J.; Li, S.; Yi, J. Ferromagnetic ordering in Mn-doped ZnO nanoparticles. Nanoscale Res. Lett. 2014, 9, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojnarowicz, J.; Omelchenko, M.; Szczytko, J.; Chudoba, T.; Gierlotka, S.; Majhofer, A.; Twardowski, A.; Lojkowski, W. Structural and magnetic properties of Co-Mn codoped ZnO nanoparticles obtained by microwave solvothermal synthesis. Crystals 2018, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Meng, D.; Pang, H.; Wu, X.; Xie, J.; Yu, X.; Chen, L.; Liu, X. Influence of Fe-doping on the structural, optical and magnetic properties of ZnO nanoparticles. J. Magn. Magn. Mater. 2012, 324, 3356–3360. [Google Scholar] [CrossRef]
- Amami, P.E.; Das, J.; Mishra, D.K.; Srinivasu, V.V.; Sahu, D.R.; Roul, B.K. Cr doped ZnO: Investigation of magnetic behaviour through SQUID and ESR studies. Phys. B Condens. Matter 2019, 572, 60–65. [Google Scholar] [CrossRef]
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 2000, 287, 1019–1022. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.L.; Lai, C.W.; Abd Hamid, S.B. Tunable band gap energy of Mn-doped ZnO nanoparticles using the coprecipitation technique. J. Nanomater. 2014, 2014, 371720. [Google Scholar] [CrossRef] [Green Version]
- Soni, B.; Deshpande, M.P.; Bhatt, S.; Garg, N.; Pandya, N.; Chaki, S.H. Influence of Mn doping on optical properties of ZnO nanoparticles synthesized by microwave irradiation. J. Opt. 2013, 42, 328–334. [Google Scholar] [CrossRef]
- Kumar, V.; Ntwaeaborwa, O.M.; Soga, T.; Dutta, V.; Swart, H.C. Rare earth doped zinc oxide nanophosphor powder: A future material for solid state lighting and solar cells. ACS Photonics 2017, 4, 2613–2637. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Rode, K. Dilute Magnetic Oxides and Nitrides. In Handbook of Magnetism and Advanced Magnetic Materials; Kronmuller, H., Parkin, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2007; Volume 4, pp. 1859–2568. [Google Scholar]
- Ungureanu, M.; Schmidt, H.; Xu, Q.; Wenckstern, H.V.; Spemann, D.; Hochmuth, H.; Lorenz, M.; Grundmann, M. Electrical and magnetic properties of RE-doped ZnO thin films (RE = Gd, Nd). Superlattice Microstrut. 2007, 42, 231–235. [Google Scholar] [CrossRef]
- Subramanian, M.; Thakur, P.; Tanemura, M.; Hihara, T.; Ganesan, V.; Soga, T.; Chae, K.H.; Jayavel, R.; Jimbo, T. Intrinsic ferromagnetism and magnetic anisotropy in Gd-doped ZnO thin films synthesized by pulsed spray pyrolysis method. J. Appl. Phys. 2010, 108, 053904. [Google Scholar] [CrossRef]
- Aggarwal, N.; Kaur, K.; Vasishth, A.; Verma, N.K. Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2016, 27, 13006–13011. [Google Scholar] [CrossRef]
- Obeid, M.M.; Jappor, H.R.; Al-Marzoki, K.; Al-Hydary, I.A.; Edrees, S.J.; Shukur, M.M. Unraveling the effect of Gd doping on the structural, optical, and magnetic properties of ZnO based diluted magnetic semiconductor nanorods. RSC Adv. 2019, 9, 33207–33221. [Google Scholar] [CrossRef] [Green Version]
- Yim, K.; Lee, J.; Lee, D.; Lee, M.; Cho, E.; Lee, H.S.; Nahm, H.H.; Han, S. Property database for single-element doping in ZnO obtained by automated first-principles calculations. Sci. Rep. 2017, 7, 40907. [Google Scholar] [CrossRef] [Green Version]
- Dakhel, A.A.; El-Hilo, M. Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation. J. Appl. Phys. 2010, 107, 123905. [Google Scholar] [CrossRef]
- Hong, R.; Pan, T.; Qian, J.; Li, H. Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J. 2006, 119, 71–81. [Google Scholar] [CrossRef]
- Mclaren, A.; Valdes-Solis, T.; Li, G.; Tsang, S.C. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 2009, 131, 12540–12541. [Google Scholar] [CrossRef]
- Chen, L.; Holmes, J.D.; Ramírez-García, S.; Morris, M.A. Facile synthesis of monodisperse ZnO nanocrystals by direct liquid phase precipitation. J. Nanomater. 2011, 2011, 853832. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lian, Y. A mechanistic study of oleic acid-mediated solvothermal shape controllable preparation of zinc oxide nanostructures. J. Alloy Compd. 2014, 594, 141–147. [Google Scholar] [CrossRef]
- Dumontel, B.; Canta, M.; Engelke, H.; Chiodoni, A.; Racca, L.; Ancona, A.; Limongi, T.; Canavese, G.; Cauda, V. Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. J. Mater. Chem. B 2017, 5, 8799–8813. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Jin, X.; Yang, G.; Jiang, C.; Song, Z.; Sun, G. Biocompatible folate-modified Gd3+/Yb3+-doped ZnO nanoparticles for dualmodal MRI/CT imaging. RSC Adv. 2014, 4, 53561–53569. [Google Scholar] [CrossRef]
- Cao, D.; Gong, S.; Shu, X.; Zhu, D.; Liang, S. Preparation of ZnO nanoparticles with high dispersibility based on oriented attachment (OA) process. Nanoscale Res. Lett. 2019, 14, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barick, K.C.; Aslam, M.; Dravid, V.P.; Bahadur, D. Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals. J. Phys. Chem. C 2008, 112, 15163–15170. [Google Scholar] [CrossRef]
- Spence, J.C.H. High-Resolution Electron Microscopy, 3rd ed.; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Mithal, D.; Kundu, T. Effect of Gd3+ doping on structural and optical properties of ZnO nanocrystals. Solid State Sci. 2017, 68, 47–54. [Google Scholar] [CrossRef]
- Ahmed, S.A. Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results Phys. 2017, 7, 604–610. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Rizvi, M.A.; Moosvi, S.K.; Krishnan, V.; Duvenhage, M.M.; Roos, W.D.; Swart, H.C. Surface, optical and photocatalytic properties of Rb doped ZnO nanoparticles. Appl. Surf. Sci. 2020, 514, 145930. [Google Scholar] [CrossRef]
- Tay, Y.Y.; Li, S.; Sun, C.Q.; Chen, P. Size dependence of Zn 2p 3/2 binding energy in nanocrystalline ZnO. Appl. Phys. Lett. 2006, 88, 173118. [Google Scholar] [CrossRef]
- Zatsepin, D.A.; Boukhvalov, D.W.; Zatsepin, A.F.; Kuznetsova, Y.A.; Mashkovtsev, M.A.; Rychkov, V.N.; Shur, V.Y.; Esin, A.A.; Kurmaev, E.Z. Electronic structure, charge transfer, and intrinsic luminescence of gadolinium oxide nanoparticles: Experiment and theory. Appl. Surf. Sci. 2018, 436, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, H.W.; Banerjee, D. Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Mineral. 1998, 83, 305–315. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Z. The optical properties of rare earth Gd doped ZnO nanocrystals. Mater. Sci. Semicond. Process. 2012, 15, 227–231. [Google Scholar] [CrossRef]
- Wang, Y.S.; Thomas, P.J.; O’Brien, P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. J. Phys. Chem. B 2006, 110, 21412–21415. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.M.; Manorama, S.V.; Reddy, A.R. Bandgap studies on anatase titanium dioxide nanoparticles. Mater. Chem. Phys. 2003, 78, 239–245. [Google Scholar] [CrossRef]
- Mazhdi, M.; Tafreshi, M.J. The effects of gadolinium doping on the structural, morphological, optical, and photoluminescence properties of zinc oxide nanoparticles prepared by co-precipitation method. Appl. Phys. A 2018, 124, 863. [Google Scholar] [CrossRef]
- Vijayaprasath, G.; Murugan, R.; Hayakawa, Y.; Ravia, G. Optical and magnetic studies on Gd doped ZnO nanoparticles synthesized by co-precipitation method. J. Lumin. 2016, 178, 375–383. [Google Scholar] [CrossRef]
- Xiao, Y.D.; Paudel, R.; Liu, J.; Ma, C.; Zhang, Z.S.; Zhou, S.K. MRI contrast agents: Classification and application. Int. J. Mol. Med. 2016, 38, 1319–1326. [Google Scholar] [CrossRef] [Green Version]
Sample | Z-Ave Size (nm) (in Ethanol) | PDI | Z-Ave Size (nm) (in Water) | PDI | Zeta-Potential (mV) in Water |
---|---|---|---|---|---|
ZnO | 256.7 ± 2.3 | 0.153 ± 0.03 | 268.9 ± 2.8 | 0.218 ± 0.01 | 22.0 ± 0.34 |
ZnO–Gd0.06 | 338.8 ± 4.3 | 0.143 ± 0.022 | 156.9 ± 6.4 | 0.344 ± 0.02 | 27.1 ± 0.82 |
ZnO–Gd0.12 | 381.7 ± 6.8 | 0.223 ± 0.01 | 196.7 ± 5.1 | 0.376 ± 0.01 | 26.8 ± 0.36 |
ZnO–Gd0.24 | 370.9 ± 5.8 | 0.169 ± 0.02 | 137.5 ± 2.9 | 0.333 ± 0.01 | 28.5 ± 0.69 |
ZnO–Mn0.06 | 3118 ± 557.0 | 0.837 ± 0.08 | 1962 ± 947.2 | 0.886 ± 0.19 | 28.2 ± 1.19 |
ZnO–Mn0.12 | 3629 ± 598.9 | 0.864 ± 0.12 | 1691 ± 829.5 | 0.835 ± 0.21 | 18.4 ± 1.34 |
ZnO–Mn0.24 | 3900 ± 844.0 | 0.835 ± 0.11 | 1727 ± 126.7 | 1.000 ± 0 | 22.2 ± 1.06 |
Ol-ZnO | 227.4 ± 1.67 | 0.098 ± 0.02 | 232.9 ± 7.16 | 0.251 ± 0.04 | 18.9 ± 0.45 |
Ol-ZnO–Gd0.06 | 242.6 ± 6.06 | 0.138 ± 0.01 | 307.6 ± 3.98 | 0.318 ± 0.02 | 18.2 ± 0.35 |
Ol-ZnO–Gd0.12 | 236.0 ± 2.35 | 0.137 ± 0.01 | 286.5 ± 3.12 | 0.325 ± 0.01 | 17.7 ± 0.36 |
Ol-ZnO–Gd0.24 | 132.3 ± 0.55 | 0.102 ± 0.02 | 229.1 ± 3.25 | 0.357 ± 0.01 | 14.3 ± 0.10 |
Ol-ZnO–Mn0.06 | 179.0 ± 1.86 | 0.130 ± 0.01 | 219.5 ± 4.15 | 0.331 ± 0.07 | 17.4 ± 0.81 |
Ol-ZnO–Mn0.12 | 308.1 ± 4.31 | 0.120 ± 0.00 | 295.8 ± 4.33 | 0.314 ± 0.00 | 16.0 ± 0.11 |
Ol-ZnO–Mn0.24 | 351.0 ± 3.60 | 0.242 ± 0.00 | 359.4 ± 1.56 | 0.354 ± 0.04 | 15.7 ± 0.10 |
ZnO–Gd0.06 | ZnO–Gd0.12 | ZnO–Gd0.24 | Ol-ZnO–Gd0.06 | Ol-ZnO–Gd0.12 | Ol-ZnO–Gd0.24 | Ol-ZnO–Mn0.06 | Ol-ZnO–Mn0.12 | Ol-ZnO–Mn0.24 | |
---|---|---|---|---|---|---|---|---|---|
Δ2θ (100) | 0.032 | 0.040 | 0.054 | 0.008 | 0.021 | 0.037 | 0.015 | 0.033 | 0.034 |
Δ2θ (002) | −0.020 | 0.009 | 0.051 | 0.016 | 0.021 | 0.036 | 0.009 | 0.028 | 0.055 |
Δ2θ (101) | 0.029 | 0.035 | 0.046 | 0.013 | 0.032 | 0.049 | 0.002 | 0.007 | 0.035 |
ZnO | ZnO–Gd0.06 | ZnO–Gd0.12 | ZnO–Gd0.24 | Ol-ZnO | Ol-ZnO–Gd0.06 | Ol-ZnO–Gd0.12 | Ol-ZnO–Gd0.24 | Ol-ZnO–Mn0.06 | Ol-ZnO–Mn0.12 | Ol-ZnO–Mn0.24 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Debye–Scherrer diameters (nm) | 5.70 | 3.92 | 3.98 | 4.10 | 5.98 | 5.63 | 5.70 | 5.62 | 7.41 | 6.65 | 5.83 |
Ol-ZnO | Ol-ZnO–Gd0.06 | Ol-ZnO–Gd0.12 | Ol-ZnO | Ol-ZnO–Mn0.06 | Ol-ZnO–Mn0.12 | |
---|---|---|---|---|---|---|
λ (nm) | 344.09 | 340.63 | 336.75 | 345.28 | 337.89 | 334.93 |
Band gap (Eg) | 3.36 | 3.38 | 3.41 | 3.35 | 3.38 | 3.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barui, S.; Gerbaldo, R.; Garino, N.; Brescia, R.; Laviano, F.; Cauda, V. Facile Chemical Synthesis of Doped ZnO Nanocrystals Exploiting Oleic Acid. Nanomaterials 2020, 10, 1150. https://doi.org/10.3390/nano10061150
Barui S, Gerbaldo R, Garino N, Brescia R, Laviano F, Cauda V. Facile Chemical Synthesis of Doped ZnO Nanocrystals Exploiting Oleic Acid. Nanomaterials. 2020; 10(6):1150. https://doi.org/10.3390/nano10061150
Chicago/Turabian StyleBarui, Sugata, Roberto Gerbaldo, Nadia Garino, Rosaria Brescia, Francesco Laviano, and Valentina Cauda. 2020. "Facile Chemical Synthesis of Doped ZnO Nanocrystals Exploiting Oleic Acid" Nanomaterials 10, no. 6: 1150. https://doi.org/10.3390/nano10061150
APA StyleBarui, S., Gerbaldo, R., Garino, N., Brescia, R., Laviano, F., & Cauda, V. (2020). Facile Chemical Synthesis of Doped ZnO Nanocrystals Exploiting Oleic Acid. Nanomaterials, 10(6), 1150. https://doi.org/10.3390/nano10061150