pH-Responsive Properties of Asymmetric Nanopapers of Nanofibrillated Cellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. TEMPO Oxidation
2.3. Amidation
2.4. Characterization
2.4.1. FT-IR
2.4.2. Conductometry
2.5. Nanopaper Preparation
2.6. Bending Curvature Analysis
3. Results and Discussion
3.1. Preparation of Cellulose Nanofibers at Different Degrees of Substitution
3.2. Fabrication of pH-Responsive Nanopapers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fratzl, P.; Elbaum, R.; Burgert, I. Cellulose fibrils direct plant organ movements. Faraday Discuss. 2008, 139, 275–282. [Google Scholar] [CrossRef]
- Elbaum, R.; Zaltzman, L.; Burgert, I.; Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 2007, 316, 884–886. [Google Scholar] [CrossRef]
- Dawson, J.; Vincent, J.F.V.; Rocca, A.M. How pine cones open. Nature 1997, 390, 668. [Google Scholar] [CrossRef]
- Ingold, C.T. Peristome teeth and spore discharge in mosses. Trans. Bot. Soc. Edinb. 1959, 38, 76–88. [Google Scholar] [CrossRef]
- Burgert, I.; Fratzl, P. Actuation systems in plants as prototypes for bioinspired devices. Philos. Trans. A Math. Phys. Eng. Sci. 2009, 367, 1541–1557. [Google Scholar] [CrossRef]
- Olszewska, A.; Eronen, P.; Johansson, L.-S.; Malho, J.-M.; Ankerfors, M.; Lindstrom, T.; Ruokolainen, J.; Laine, J.; Osterberg, M. The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 2011, 18, 1213–1226. [Google Scholar] [CrossRef]
- Falt, S.; Wagberg, L.; Vesterlind, E.L. Swelling of model films of cellulose having different charge densities and comparison to the swelling behavior of corresponding fibers. Langmuir 2003, 19, 7895–7903. [Google Scholar] [CrossRef]
- Wang, M.; Tian, X.L.; Ras, R.H.A.; Ikkala, O. Sensitive Humidity-Driven Reversible and Bidirectional Bending of Nanocellulose Thin Films as Bio-Inspired Actuation. Adv. Mater. Interfaces 2015, 2, 1500080. [Google Scholar] [CrossRef]
- Kuang, Y.D.; Chen, C.J.; Cheng, J.; Pastel, G.; Li, T.; Song, J.W.; Jiang, F.; Li, Y.J.; Zhang, Y.; Jang, S.H.; et al. Selectively aligned cellulose nanofibers towards high-performance soft actuators. Extreme Mech. Lett. 2019, 29. [Google Scholar] [CrossRef]
- Reyssat, E.; Mahadevan, L. How wet paper curls. EPL 2011, 93. [Google Scholar] [CrossRef] [Green Version]
- Keplinger, T.; Wang, X.Q.; Burgert, I. Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J. Mater. Chem. A 2019, 7, 2981–2992. [Google Scholar] [CrossRef] [Green Version]
- Paakko, M.; Ankerfors, M.; Kosonen, H.; Nykanen, A.; Ahola, S.; Osterberg, M.; Ruokolainen, J.; Laine, J.; Larsson, P.T.; Ikkala, O.; et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 2007, 8, 1934–1941. [Google Scholar] [CrossRef]
- Tingaut, P.; Zimmermann, T.; Sebe, G. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J. Mater. Chem. 2012, 22, 20105–20111. [Google Scholar] [CrossRef]
- Luo, H.L.; Dong, J.J.; Yao, F.L.; Yang, Z.W.; Li, W.; Wang, J.; Xu, X.H.; Hu, J.; Wan, Y.Z. Layer-by-Layer Assembled Bacterial Cellulose/Graphene Oxide Hydrogels with Extremely Enhanced Mechanical Properties. Nano-Micro Lett. 2018, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.T.; Ma, C.; Tan, S.; Ma, M.G.; Wan, P.B.; Chen, F. Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Nano-Micro Lett. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Natterodt, J.C.; Meesorn, W.; Zoppe, J.O.; Weder, C. Functionally Graded Polyurethane/Cellulose Nanocrystal Composites. Macromol. Mater. Eng. 2018, 303. [Google Scholar] [CrossRef]
- Fox, J.D.; Capadona, J.R.; Marasco, P.D.; Rowan, S.J. Bioinspired Water-Enhanced Mechanical Gradient Nanocomposite Films That Mimic the Architecture and Properties of the Squid Beak. J. Am. Chem. Soc. 2013, 135, 5167–5174. [Google Scholar] [CrossRef]
- Wang, B.C.; Benitez, A.J.; Lossada, F.; Merindol, R.; Walther, A. Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers. Angew. Chem. Int. Ed. 2016, 55, 5966–5970. [Google Scholar] [CrossRef]
- Tanaka, R.; Saito, T.; Isogai, A. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8. Int. J. Biol. Macromol. 2012, 51, 228–234. [Google Scholar] [CrossRef]
- Villares, A.; Moreau, C.; Cathala, B. Star-like Supramolecular Complexes of Reducing-End-Functionalized Cellulose Nanocrystals. ACS Omega 2018, 3, 16203–16211. [Google Scholar] [CrossRef] [Green Version]
- Chemin, M.; Moreau, C.; Cathala, B.; Villares, A. Adsorption Behavior of Reducing End-Modified Cellulose Nanocrystals: A Kinetic Study Using Quartz Crystal Microbalance. J. Renew. Mater. 2020, 8, 29–43. [Google Scholar] [CrossRef]
- Perez, D.D.; Montanari, S.; Vignon, M.R. TEMPO-mediated oxidation of cellulose III. Biomacromolecules 2003, 4, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Le Duigou, A.; Keryvin, V.; Beaugrand, J.; Pernes, M.; Scarpa, F.; Castro, M. Humidity responsive actuation of bioinspired hygromorph biocomposites (HBC) for adaptive structures. Compos. Part A Appl. Sci. Manuf. 2019, 116, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [Google Scholar] [CrossRef]
- Benkaddour, A.; Journoux-Lapp, C.; Jradi, K.; Robert, S.; Daneault, C. Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: Amidation and esterification process. J. Mater. Sci. 2014, 49, 2832–2843. [Google Scholar] [CrossRef]
- Fang, Z.Q.; Kuang, Y.D.; Zhou, P.P.; Ming, S.Y.; Zhu, P.H.; Liu, Y.; Ning, H.L.; Chen, G. Programmable Shape Recovery Process of Water-Responsive Shape Memory Poly(vinyl alcohol) by Wettability Contrast Strategy. ACS Appl. Mater. Interfaces 2017, 9, 5495–5502. [Google Scholar] [CrossRef]
- Zhang, K.; Geissler, A.; Standhardt, M.; Mehlhase, S.; Gallei, M.; Chen, L.Q.; Thiele, C.M. Moisture-responsive films of cellulose stearoyl esters showing reversible shape transitions. Sci. Rep. 2015, 5, 11011. [Google Scholar] [CrossRef]
- Duan, J.J.; Liang, X.C.; Zhu, K.K.; Guo, J.H.; Zhang, L.N. Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter 2017, 13, 345–354. [Google Scholar] [CrossRef]
Charge (mmol g−1) | DO/DS | |
---|---|---|
TOCN5 (24h) | −0.301 ± 0.113 | 0.05 ± 0.02 |
TOCN9 (48h) | −0.531 ± 0.144 | 0.09 ± 0.02 |
AMCN | 0.227 ± 0.044 | 0.04 ± 0.01 |
Film | d (µm) | Charge (µmol) | pH | ta (s) | κmax (mm−1) | k1 (s−1) | dκ/dt (mm−1 s−1) |
---|---|---|---|---|---|---|---|
NFC/TOCN5 | 52 ± 1 | 1.6 ± 0.1 | high | 12 | 0.071 ± 0.006 | 0.119 ± 0.020 | 0.006 ± 0.001 |
NFC/TOCN9 | 53 ± 2 | 2.5 ± 0.0 | high | 15 | 0.193 ± 0.024 | 0.104 ± 0.047 | 0.013 ± 0.004 |
NFC/TOCN9 | 75 ± 1 | 3.7 ± 0.1 | high | 23 | 0.107 ± 0.014 | 0.038 ± 0.014 | 0.005 ± 0.001 |
d (µm) | pH | ta (s) | κmax (mm−1) | k1 (s−1) | dκ/dt (mm−1 s−1) | |
---|---|---|---|---|---|---|
TOCN9/AMCN | 50 ± 0 | high | 10 | 0.062 ± 0.006 | 0.275 ± 0.111 | 0.009 ± 0.001 |
TOCN9/AMCN | 48 ± 0 | low | 9 | 0.056 ± 0.001 | 0.160 ± 0.017 | 0.009 ± 0.001 |
TOCN9/NFC/AMCN | 53 ± 0 | high | 6 | 0.034 ± 0.001 | 0.232 ± 0.014 | 0.006 ± 0.000 |
TOCN9/NFC/AMCN | 45 ± 0 | low | 10 | 0.055 ± 0.005 | 0.210 ± 0.086 | 0.008 ± 0.000 |
pH | Theoretical Charge (µmol) | Effective Charge (µmol) | |
---|---|---|---|
TOCN9/AMCN | high | 2.7 ± 0.0 | 1.1 ± 0.1 |
TOCN9/AMCN | low | 1.1 ± 0.1 | 0.7 ± 0.0 |
TOCN9/NFC/AMCN | high | 1.7 ± 0.0 | 0.4 ± 0.0 |
TOCN9/NFC/AMCN | low | 0.7 ± 0.0 | 0.7 ± 0.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chemin, M.; Beaumal, B.; Cathala, B.; Villares, A. pH-Responsive Properties of Asymmetric Nanopapers of Nanofibrillated Cellulose. Nanomaterials 2020, 10, 1380. https://doi.org/10.3390/nano10071380
Chemin M, Beaumal B, Cathala B, Villares A. pH-Responsive Properties of Asymmetric Nanopapers of Nanofibrillated Cellulose. Nanomaterials. 2020; 10(7):1380. https://doi.org/10.3390/nano10071380
Chicago/Turabian StyleChemin, Maud, Baptiste Beaumal, Bernard Cathala, and Ana Villares. 2020. "pH-Responsive Properties of Asymmetric Nanopapers of Nanofibrillated Cellulose" Nanomaterials 10, no. 7: 1380. https://doi.org/10.3390/nano10071380
APA StyleChemin, M., Beaumal, B., Cathala, B., & Villares, A. (2020). pH-Responsive Properties of Asymmetric Nanopapers of Nanofibrillated Cellulose. Nanomaterials, 10(7), 1380. https://doi.org/10.3390/nano10071380