Nanostructured Lead Sulphide Depositions by AACVD Technique Using Bis(Isobutyldithiophosphinato)Lead(II) Complex as Single Source Precursor and Its Impedance Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Bis(Diisobutyldithiophosphinato)lead(II) Complex
2.2. AACVD Procedure
2.3. Impedance Spectroscopic Analysis
2.4. Structural and Microstructural Characterization
3. Results
3.1. Spectroscopic and Gravimetric Analysis
3.2. Impedance Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwon, J.; Kim, S.; Lee, J.; Park, C.; Kim, O.; Xu, B.; Bae, J.; Kang, S. Uncooled Short-Wave Infrared Sensor Based on PbS Quantum Dots Using ZnO NPs. Nanomaterials 2019, 9, 926. [Google Scholar] [CrossRef] [Green Version]
- Halim, M.A. Harnessing sun’s energy with quantum dots based next generation solar cell. Nanomaterials 2013, 3, 22–47. [Google Scholar] [CrossRef] [Green Version]
- Khokhlov, D. Lead Chalcogenides: Physics and Applications; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Kundu, T.; Mukherjee, M.; Chakravorty, D.; Cross, L. Dielectric behavior of nanocomposites of lead sulphide and ferroelectric glass ceramics. J. Appl. Phys. 1998, 83, 4380–4384. [Google Scholar] [CrossRef]
- Afsar, M.; Jamil, A.; Rafiq, M. Ferroelectric, dielectric and electrical behavior of two-dimensional lead sulphide nanosheets. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 045010. [Google Scholar] [CrossRef]
- Rana, C.; Bera, S.R.; Saha, S. Growth of SnS nanoparticles and its ability as ethanol gas sensor. J. Mater. Sci. Mater. Electron. 2019, 30, 2016–2029. [Google Scholar] [CrossRef]
- Doanh, S.C.; Quynh, L.M. High Sensitive Enzyme Based Glucose Sensor Using Lead Sulfide Nanocrystals. VNU J. Sci. Math. Phys. 2015, 31, 61–67. [Google Scholar]
- Ekinci, A.; Şahin, Ö.; Horoz, S. Chemical bath deposition of Co-doped PbS thin films for solar cell application. J. Mater. Sci. Mater. Electron. 2019, 31, 1210–1215. [Google Scholar] [CrossRef]
- Sonavane, D.; Jare, S.; Kathare, R.; Bulakhe, R.; Shim, J. Chemical Synthesis of PbS Thin Films and Its physicochemical Properties. Mater. Today Proc. 2018, 5, 7743–7747. [Google Scholar] [CrossRef]
- Mehmood, U.; Khan, A.U.H. Spray coated PbS nano-crystals as an effective counter-electrode material for platinum free Dye-Sensitized Solar Cells (DSSCs). Sol. Energy 2019, 193, 1–5. [Google Scholar] [CrossRef]
- Kaci, S.; Keffous, A.; Guerbous, L.; Trari, M. Preparation and room temperature photoluminescence characterization of PbS/Si (100) thin films. Thin Solid Films 2011, 520, 79–82. [Google Scholar] [CrossRef]
- Jen-La Plante, I.; Zeid, T.W.; Yang, P.; Mokari, T. Synthesis of metal sulfide nanomaterials via thermal decomposition of single-source precursors. J. Mater. Chem. 2010, 20, 6612–6617. [Google Scholar] [CrossRef] [Green Version]
- Saraidarov, T.; Reisfeld, R.; Sashchiuk, A.; Lifshitz, E. Synthesis and characterization of PbS nanocrystallites organized into different morphological assemblies. J. Non Cryst. Solids 2004, 345, 698–702. [Google Scholar] [CrossRef]
- Shanker, G.S.; Swarnkar, A.; Chatterjee, A.; Chakraborty, S.; Phukan, M.; Parveen, N.; Biswas, K.; Nag, A. Electronic grade and flexible semiconductor film employing oriented attachment of colloidal ligand-free PbS and PbSe nanocrystals at room temperature. Nanoscale 2015, 7, 9204–9214. [Google Scholar] [CrossRef]
- Sakthivel, P.; Sharon, S.T.; Arokiya, M.T.; Jesudurai, J. Investigation of Lead Sulphide nanoparticles synthesized by hydrothermal method. Int. J. Sci. Eng. Res. 2014, 5, 152–155. [Google Scholar]
- Nasir, E.; Abass, M. Characterization, Morphology and Electrical Properties of Chemically Deposited Nanocrystalline PbS/Si Heterojunction Thin Films. Chalcogenide Lett. 2016, 13, 271–279. [Google Scholar]
- Marchand, P.; Hassan, I.A.; Parkin, I.P.; Carmalt, C.J. Aerosol-assisted delivery of precursors for chemical vapour deposition: Expanding the scope of CVD for materials fabrication. Dalton Trans. 2013, 42, 9406–9422. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Saah, S.A.; Boadi, N.; Adu-Poku, D.; Wilkins, C. Lead ethyl dithiocarbamates: Efficient single-source precursors to PbS nanocubes. R. Soc. Open Sci. 2019, 6, 190943. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, J.; Afzaal, M.; Vincent, M.A.; Burton, N.A.; Hillier, I.H.; O’Brien, P. Low temperature CVD growth of PbS films on plastic substrates. Chem. Commun. 2011, 47, 1991–1993. [Google Scholar] [CrossRef]
- Kuchen, W.; Metten, J.; Judat, A. Metallkomplexe der Dialkyldithiophosphinsäuren, I. Darstellung und Eigenschaften von Dialkyldithiophosphinato-Komplexen. Chem. Ber. 1964, 97, 2306–2315. [Google Scholar] [CrossRef]
- Byrom, C.; Malik, M.; O’Brien, P.; White, A.; Williams, D. Synthesis and X-ray single crystal structures of bis (diisobutyldithiophosphinato) cadmium (II) or zinc (II): Potential single-source precursors for II/VI materials. Polyhedron 2000, 19, 211–215. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, Y.; Xie, B.; Yuan, S.; Liu, X.; Qian, Y. Hydrothermal preparation of uniform cubic-shaped PbS nanocrystals. J. Cryst. Growth 2001, 231, 248–251. [Google Scholar] [CrossRef]
- Deng, B.; Zhong, S.-L.; Wang, D.-H.; Wang, S.-S.; Zhang, T.-K.; Qu, W.-G.; Xu, A.-W. High yield synthesis of matchstick-like PbS nanocrystals using mesoporous organosilica as template. Nanoscale 2011, 3, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, R.; Raut, S.; Dash, T.; Mohapatra, S.; Muduli, R.; Panigrahi, S. Investigating the effect of multiple grain-grain interfaces on electric transport behavior of [50 wt% BaFe12O19–50 wt% NaO5BiO5TiO3] magnetoelectric nanocomposite system. Phys. B Condens. Matter 2017, 512, 16–25. [Google Scholar] [CrossRef]
- Sahu, M.; Choudhary, R. Processing and Electrical Characteristics of Barium Doped CaCu3Ti4O12. Trans. Electr. Electron. Mater. 2019, 20, 16–23. [Google Scholar] [CrossRef]
- Bhowmik, R.; Muthuselvam, I.P. Dielectric properties and signature of multi-ferroelectricity in CO2FeO4: A structurally single phased and bi-phased spinel oxide. J. Alloy. Compd. 2014, 589, 247–257. [Google Scholar] [CrossRef]
- Šepelák, V.; Bergmann, I.; Feldhoff, A.; Heitjans, P.; Krumeich, F.; Menzel, D.; Litterst, F.J.; Campbell, S.J.; Becker, K.D. Nanocrystalline nickel ferrite, NiFe2O4: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. J. Phys. Chem. C 2007, 111, 5026–5033. [Google Scholar] [CrossRef]
- Azab, A.; Ward, A.A.; Mahmoud, G.; El-Hanafy, E.M.; El-Zahed, H.; Terra, F. Structural and dielectric properties of prepared PbS and PbTe nanomaterials. J. Semicond. 2018, 39, 123006. [Google Scholar] [CrossRef]
- Pattanayak, R.; Muduli, R.; Panda, R.K.; Dash, T.; Sahu, P.; Raut, S.; Panigrahi, S. Investigating the effect of multiple grain-grain interfaces on electric and magnetic properties of [50 wt% BaFe12O19–50 wt% NaO5BiO5TiO3] composite system. Phys. B Condens. Matter 2016, 485, 67–77. [Google Scholar] [CrossRef]
- Mumtaz, M.; Iftekhar, M.; Saira, F.; Raffi, M.; Jamil, A.; Rafiq, M.; Hasan, M. Investigation of intrinsic electrical properties of cerium doped lithium cobalt oxide, nanostructured materials. AIP Adv. 2018, 8, 115111. [Google Scholar] [CrossRef]
- Sahoo, S.; Mahapatra, P.; Choudhary, R.; Nandagoswamy, M. Dielectric and impedance spectroscopy of (Ba, Sm) (Ti, Fe) O3 system in the low-medium frequency range. J. Mater. Sci. Mater. Electron. 2015, 26, 6572–6584. [Google Scholar] [CrossRef]
- Younas, M.; Nadeem, M.; Atif, M.; Grossinger, R. Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J. Appl. Phys. 2011, 109, 093704. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Behera, S.; Padhee, R.; Nayak, P.; Choudhary, R. Dielectric and electrical properties of Na2Pb2La2W2Ti4Ta4O30 electroceramics. J. Adv. Ceram. 2012, 1, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Pei, H.; Guo, S.; Ren, L.; Chen, C.; Luo, B.; Dong, X.; Jin, K.; Ren, R.; Zeeshan, H.M. The frustration-induced ferroelectricity of a manganite tricolor superlattice with artificially broken symmetry. Sci. Rep. 2017, 7, 6201. [Google Scholar] [CrossRef] [Green Version]
Impedance Fitting Results | AC conductivity Fitting Results | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rg (Ω) | Cg (F) | Rgb (Ω) | Cgb (F) | ng | ngb | τg (s) | τgb (s) | σgb (S/m) | σg (S/m) | n1 | n2 |
2118 | 4.94 × 10−11 | 14,023 | 2.59 × 10−9 | 0.72 | 0.84 | 1.04 × 10−7 | 3.63 × 10−5 | 8.08 × 10−4 | 4.8 × 10−3 | 0.85 | 0.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iram, S.; Mahmood, A.; Sitara, E.; Batool Bukhari, S.A.; Fatima, S.A.; Shaheen, R.; Azad Malik, M. Nanostructured Lead Sulphide Depositions by AACVD Technique Using Bis(Isobutyldithiophosphinato)Lead(II) Complex as Single Source Precursor and Its Impedance Study. Nanomaterials 2020, 10, 1438. https://doi.org/10.3390/nano10081438
Iram S, Mahmood A, Sitara E, Batool Bukhari SA, Fatima SA, Shaheen R, Azad Malik M. Nanostructured Lead Sulphide Depositions by AACVD Technique Using Bis(Isobutyldithiophosphinato)Lead(II) Complex as Single Source Precursor and Its Impedance Study. Nanomaterials. 2020; 10(8):1438. https://doi.org/10.3390/nano10081438
Chicago/Turabian StyleIram, Sadia, Azhar Mahmood, Effat Sitara, Syeda Aqsa Batool Bukhari, Syeda Arooj Fatima, Rubina Shaheen, and Mohammad Azad Malik. 2020. "Nanostructured Lead Sulphide Depositions by AACVD Technique Using Bis(Isobutyldithiophosphinato)Lead(II) Complex as Single Source Precursor and Its Impedance Study" Nanomaterials 10, no. 8: 1438. https://doi.org/10.3390/nano10081438
APA StyleIram, S., Mahmood, A., Sitara, E., Batool Bukhari, S. A., Fatima, S. A., Shaheen, R., & Azad Malik, M. (2020). Nanostructured Lead Sulphide Depositions by AACVD Technique Using Bis(Isobutyldithiophosphinato)Lead(II) Complex as Single Source Precursor and Its Impedance Study. Nanomaterials, 10(8), 1438. https://doi.org/10.3390/nano10081438