The Emerging Role of Cold Atmospheric Plasma in Implantology: A Review of the Literature
Abstract
:1. Introduction
2. Overview of Plasma Features and Functions
3. Plasma’s Potential Biomedical Applications
3.1. Systemic Applications
3.2. Oral Applications
3.2.1. Implantology
Biocompatibility
Surface Improvement
Antimicrobial Activity
Results from In Vivo Studies
3.2.2. Future Trends in Oral Surgery and Implantology
Author Contributions
Funding
Conflicts of Interest
References
- Przekora, A. Current trends in fabrication of biomaterials for bone and cartilage regeneration: Materials modifications and biophysical stimulations. Int. J. Mol. Sci. 2019, 20, 435. [Google Scholar] [CrossRef] [Green Version]
- Braný, D.; Dvorská, D.; Halašová, E.; Škovierová, H. Cold atmospheric plasma: A powerful tool for modern medicine. Int. J. Mol. Sci. 2020, 21, 2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishaq, M.; Bazaka, K.; Ostrikov, K. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death. J. Phys. D 2015, 48, 464002. [Google Scholar] [CrossRef]
- Semmler, M.L.; Bekeschus, S.; Schafer, M.; Bernhardt, T.; Fischer, T.; Witzke, K.; Seebauer, C.; Rebl, H.; Grambow, E.; Vollmar, B.; et al. Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (CAP) in cancer treatment. Cancers 2020, 12, 269. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, T.; Semmler, M.L.; Schafer, M.; Bekeschus, S.; Emmert, S.; Boeckmann, L. Plasma medicine: Applications of cold atmospheric pressure plasma in dermatology. Oxid. Med. Cell Longev. 2019, 2019, 3873928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laroussi, M. Low temperature plasma-based sterilization: Overview and state-of-the-art. Plasma Process. Polym. 2005, 2, 391–400. [Google Scholar] [CrossRef]
- Duske, K.; Koban, I.; Kindel, E.; Schroder, K.; Nebe, B.; Holtfreter, B.; Jablonowski, L.; Weltmann, K.D.; Kocher, T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J. Clin. Periodontol. 2012, 39, 400–407. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Bradbury, M.; Ostrikov, K.; Murphy, A.B. Pseudomonas aeruginosa biofilm response and resistance to cold atmospheric pressure plasma is linked to the redox-active molecule phenazine. PLoS ONE 2015, 10, e0130373. [Google Scholar] [CrossRef] [Green Version]
- Tresp, H.; Hammer, M.U.; Winter, J.; Weltmann, K.; Reuter, S. Quantitative detection of plasma-generated radicals in liquids by electron paramagnetic resonance spectroscopy. J. Phys. D 2013, 46, 435401. [Google Scholar] [CrossRef] [Green Version]
- Sakudo, A.; Yagyu, Y.; Onodera, T. Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. Int. J. Mol. Sci. 2019, 20, 5216. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, C.; Berganza, C.; Zhang, J. Cold atmospheric plasma: Methods of production and application in dentistry and oncology. Med. Gas. Res. 2013, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, J.; Zhou, X.; Liu, Z.; Wang, C.; Wang, K.; Zhang, J.; Wang, Z. A novel cold atmospheric pressure air plasma jet for peri-implantitis treatment: An in vitro study. Dent. Mater. J. 2018, 37, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daeschlein, G.; Scholz, S.; Ahmed, R.; Majumdar, A.; von Woedtke, T.; Haase, H.; Niggemeier, M.; Kindel, E.; Brandenburg, R.; Weltmann, K.D.; et al. Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J. Dtsch. Dermatol. Ges. 2012, 10, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Bekeschus, S.; Wende, K.; Vollmar, B.; von Woedtke, T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp. Dermatol. 2017, 26, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Lademann, J.; Richter, H.; Alborova, A.; Humme, D.; Patzelt, A.; Kramer, A.; Weltmann, K.D.; Hartmann, B.; Ottomann, C.; Fluhr, J.W.; et al. Risk assessment of the application of a plasma jet in dermatology. J. Biomed. Opt. 2009, 14, 054025. [Google Scholar] [CrossRef] [Green Version]
- Jablonowski, L.; Kocher, T.; Schindler, A.; Muller, K.; Dombrowski, F.; von Woedtke, T.; Arnold, T.; Lehmann, A.; Rupf, S.; Evert, M.; et al. Side effects by oral application of atmospheric pressure plasma on the mucosa in mice. PLoS ONE 2019, 14, e0215099. [Google Scholar] [CrossRef] [Green Version]
- Gherardi, M.; Tonini, R.; Colombo, V. Plasma in dentistry: Brief history and current status. Trends Biotechnol. 2018, 36, 583–585. [Google Scholar] [CrossRef]
- Idlibi, A.N.; Al-Marrawi, F.; Hannig, M.; Lehmann, A.; Rueppell, A.; Schindler, A.; Jentsch, H.; Rupf, S. Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma. Biofouling 2013, 29, 369–379. [Google Scholar] [CrossRef]
- Mendis, D.; Rosenberg, M.; Azam, F. A note on the possible electrostatic disruption of bacteria. IEEE Trans. Plasma Sci. 2000, 28, 1304–1306. [Google Scholar] [CrossRef]
- Moisan, M.; Barbeau, J.; Crevier, M.-C.; Pelletier, J.; Philip, N.; Saoudi, B. Plasma sterilization. Methods and mechanisms. Pure Appl. Chem. 2002, 74, 349–358. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, M.; Yang, Y.; Li, J.; Su, Y.F.; Li, H.P.; Tan, J.G. Inhibition of bacterial growth on zirconia abutment with a helium cold atmospheric plasma jet treatment. Clin. Oral Investig. 2020, 24, 1465–1477. [Google Scholar] [CrossRef]
- Naujokat, H.; Harder, S.; Schulz, L.Y.; Wiltfang, J.; Florke, C.; Acil, Y. Surface conditioning with cold argon plasma and its effect on the osseointegration of dental implants in miniature pigs. J. Craniomaxillofac Surg. 2019, 47, 484–490. [Google Scholar] [CrossRef]
- Kim, I.H.; Son, J.S.; Kwon, T.Y.; Kim, K.H. Effect of atmospheric plasma treatment to titanium surface on initial osteoblast-like cell spreading. J. Nanosci. Nanotechnol. 2015, 15, 134–137. [Google Scholar] [CrossRef]
- Lee, H.J.; Kwon, T.Y.; Kim, K.H.; Kang, S.S.; Choi, S.H.; Kwon, S.T.; Cho, D.H.; Son, J.S. In vitro evaluation of hydroxyapatite-coated titanium implant with atmospheric plasma treatment. J. Nanosci. Nanotechnol. 2015, 15, 5593–5596. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeong, W.S.; Seo, S.J.; Kim, H.W.; Kim, K.N.; Choi, E.H.; Kim, K.M. Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration. Dent. Mater. 2017, 33, 257–270. [Google Scholar] [CrossRef]
- Sladek, R.; Stoffels, E. Deactivation of Escherichia coli by the plasma needle. J. Phys. D 2005, 38, 1716. [Google Scholar] [CrossRef]
- Karaman, O.; Kelebek, S.; Demirci, E.A.; Ibis, F.; Ulu, M.; Ercan, U.K. Synergistic effect of cold plasma treatment and RGD peptide coating on cell proliferation over titanium surfaces. Tissue Eng. Regen. Med. 2018, 15, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Matthes, R.; Jablonowski, L.; Holtfreter, B.; Gerling, T.; von Woedtke, T.; Kocher, T. Fibroblast growth on zirconia ceramic and titanium disks after application with cold atmospheric pressure plasma devices or with antiseptics. Int. J. Oral Maxillofac Implants 2019, 34, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Schwartz, Z.; Wieland, M.; Rupp, F.; Geis-Gerstorfer, J.; Cochran, D.L.; Boyan, B.D. High surface energy enhances cell response to titanium substrate microstructure. J. Biomed. Mater. Res. A 2005, 74, 49–58. [Google Scholar] [CrossRef]
- Schwarz, F.; Sager, M.; Ferrari, D.; Herten, M.; Wieland, M.; Becker, J. Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive) and conventional SLA titanium implants: An immunohistochemical study in dogs. J. Clin. Periodontol. 2008, 35, 64–75. [Google Scholar] [CrossRef]
- Nomura, Y.; Takamatsu, T.; Kawano, H.; Miyahara, H.; Okino, A.; Yoshida, M.; Azuma, T. Investigation of blood coagulation effect of nonthermal multigas plasma jet in vitro and in vivo. J. Surg. Res. 2017, 219, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Rupf, S.; Idlibi, A.N.; Marrawi, F.A.; Hannig, M.; Schubert, A.; von Mueller, L.; Spitzer, W.; Holtmann, H.; Lehmann, A.; Rueppell, A.; et al. Removing biofilms from microstructured titanium ex vivo: A novel approach using atmospheric plasma technology. PLoS ONE 2011, 6, e25893. [Google Scholar] [CrossRef]
- Rashmei, Z.; Bornasi, H.; Ghoranneviss, M. Evaluation of treatment and disinfection of water using cold atmospheric plasma. J. Water Health 2016, 14, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Isbary, G.; Heinlin, J.; Shimizu, T.; Zimmermann, J.L.; Morfill, G.; Schmidt, H.U.; Monetti, R.; Steffes, B.; Bunk, W.; Li, Y.; et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: Results of a randomized controlled trial. Br. J. Dermatol. 2012, 167, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Chuangsuwanich, A.; Assadamongkol, T.; Boonyawan, D. The healing effect of low-temperature atmospheric-pressure plasma in pressure ulcer: A randomized controlled trial. Int. J. Low Extrem. Wounds 2016, 15, 313–319. [Google Scholar] [CrossRef]
- Daeschlein, G.; Napp, M.; Lutze, S.; Arnold, A.; von Podewils, S.; Guembel, D.; Junger, M. Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. J. Dtsch. Dermatol. Ges. 2015, 13, 143–150. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, K.H.; Park, S.Y.; Yoon, S.Y.; Kim, G.H.; Lee, Y.M.; Rhyu, I.C.; Seol, Y.J. The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs. J. Periodontal. Implant Sci. 2019, 49, 319–329. [Google Scholar] [CrossRef]
- Goree, J.; Liu, B.; Drake, D.; Stoffels, E. Killing of S. mutans Bacteria using a plasma needle at atmospheric pressure. IEEE Trans. Plasma Sci. 2006, 34, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Jablonowski, L.; Koban, I.; Berg, M.H.; Kindel, E.; Duske, K.; Schröder, K.; Weltmann, K.-D.; Kocher, T. Elimination of E. Faecalis by a new non-thermal atmospheric pressure plasma handheld device for endodontic treatment. A preliminary investigation. Plasma Process. Polym. 2013, 10, 499–505. [Google Scholar] [CrossRef]
- Simoncelli, E.; Barbieri, D.; Laurita, R.; Liguori, A.; Stancampiano, A.; Viola, L.; Tonini, R.; Gherardi, M.; Colombo, V. Preliminary investigation of the antibacterial efficacy of a handheld plasma gun source for endodontic procedures. Clin. Plasma Med. 2015, 3, 77–86. [Google Scholar] [CrossRef]
- Schaudinn, C.; Jaramillo, D.; Freire, M.O.; Sedghizadeh, P.P.; Nguyen, A.; Webster, P.; Costerton, J.W.; Jiang, C. Evaluation of a nonthermal plasma needle to eliminate ex vivo biofilms in root canals of extracted human teeth. Int. Endod. J. 2013, 46, 930–937. [Google Scholar] [CrossRef] [Green Version]
- Canullo, L.; Cassinelli, C.; Gotz, W.; Tarnow, D. Plasma of argon accelerates murine fibroblast adhesion in early stages of titanium disk colonization. Int. J. Oral Maxillofac Implants 2013, 28, 957–962. [Google Scholar] [CrossRef]
- Canullo, L.; Genova, T.; Mandracci, P.; Mussano, F.; Abundo, R.; Fiorellini, J.P. Morphometric changes induced by cold argon plasma treatment on osteoblasts grown on different dental implant surfaces. Int. J. Periodontics Restor. Dent. 2017, 37, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Genova, T.; Wang, H.L.; Carossa, S.; Mussano, F. Plasma of argon increases cell attachment and bacterial decontamination on different implant surfaces. Int. J. Oral Maxillofac Implants 2017, 32, 1315–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canullo, L.; Tallarico, M.; Botticelli, D.; Alccayhuaman, K.A.A.; Martins Neto, E.C.; Xavier, S.P. Hard and soft tissue changes around implants activated using plasma of argon: A histomorphometric study in dog. Clin. Oral Implants Res. 2018, 29, 389–395. [Google Scholar] [CrossRef]
- Coelho, P.G.; Giro, G.; Teixeira, H.S.; Marin, C.; Witek, L.; Thompson, V.P.; Tovar, N.; Silva, N.R. Argon-based atmospheric pressure plasma enhances early bone response to rough titanium surfaces. J. Biomed. Mater. Res. A 2012, 100, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Danna, N.R.; Beutel, B.G.; Tovar, N.; Witek, L.; Marin, C.; Bonfante, E.A.; Granato, R.; Suzuki, M.; Coelho, P.G. Assessment of atmospheric pressure plasma treatment for implant osseointegration. Biomed. Res. Int. 2015, 2015, 761718. [Google Scholar] [CrossRef]
- Duske, K.; Jablonowski, L.; Koban, I.; Matthes, R.; Holtfreter, B.; Sckell, A.; Nebe, J.B.; von Woedtke, T.; Weltmann, K.D.; Kocher, T. Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs. Biomaterials 2015, 52, 327–334. [Google Scholar] [CrossRef]
- Giro, G.; Tovar, N.; Witek, L.; Marin, C.; Silva, N.R.; Bonfante, E.A.; Coelho, P.G. Osseointegration assessment of chairside argon-based nonthermal plasma-treated Ca-P coated dental implants. J. Biomed. Mater. Res. A 2013, 101, 98–103. [Google Scholar] [CrossRef]
- İbiş, F.; Oflaz, H.; Ercan, U.K. Biofilm inactivation and prevention on common implant material surfaces by nonthermal DBD plasma treatment. Plasma Med. 2016, 6, 33–45. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Ok, J.-W.; Lee, H.-J.; Kim, G.C.; Lee, H.J. Surface treatment of a titanium implant using a low temperature atmospheric pressure plasma jet. Appl. Sci. Converg. Technol. 2016, 25, 51–55. [Google Scholar] [CrossRef]
- Matthes, R.; Duske, K.; Kebede, T.G.; Pink, C.; Schluter, R.; von Woedtke, T.; Weltmann, K.D.; Kocher, T.; Jablonowski, L. Osteoblast growth, after cleaning of biofilm-covered titanium discs with air-polishing and cold plasma. J. Clin. Periodontol. 2017, 44, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Preissner, S.; Wirtz, H.C.; Tietz, A.K.; Abu-Sirhan, S.; Herbst, S.R.; Hartwig, S.; Pierdzioch, P.; Schmidt-Westhausen, A.M.; Dommisch, H.; Hertel, M. Bactericidal efficacy of tissue tolerable plasma on microrough titanium dental implants: An in-vitro-study. J. Biophotonics 2016, 9, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Smeets, R.; Henningsen, A.; Heuberger, R.; Hanisch, O.; Schwarz, F.; Precht, C. Influence of UV irradiation and cold atmospheric pressure plasma on zirconia surfaces: An in vitro study. Int. J. Oral Maxillofac Implants 2019, 34, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Ulu, M.; Pekbagriyanik, T.; Ibis, F.; Enhos, S.; Ercan, U.K. Antibiofilm efficacies of cold plasma and er: YAG laser on Staphylococcus aureus biofilm on titanium for nonsurgical treatment of peri-implantitis. Niger. J. Clin. Pract. 2018, 21, 758–765. [Google Scholar] [CrossRef]
- Wang, X.Q.; Wang, F.P.; Chen, W.; Huang, J.; Bazaka, K.; Ostrikov, K.K. Non-equilibrium plasma prevention of Schistosoma japonicum transmission. Sci. Rep. 2016, 6, 35353. [Google Scholar] [CrossRef] [Green Version]
- Annunziata, M.; Canullo, L.; Donnarumma, G.; Caputo, P.; Nastri, L.; Guida, L. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces: In vitro study. Med. Oral Patol. Oral Cir. Bucal. 2016, 21, e118–e121. [Google Scholar] [CrossRef]
- Tominami, K.; Kanetaka, H.; Sasaki, S.; Mokudai, T.; Kaneko, T.; Niwano, Y. Cold atmospheric plasma enhances osteoblast differentiation. PLoS ONE 2017, 12, e0180507. [Google Scholar] [CrossRef]
- Lindhe, J.; Lang, N.P.; Karring, T. Clinical Periodontology and Implant Dentistry; Blackwell Munksgaard: Oxford, UK, 2003; Volume 4. [Google Scholar]
- Robertson, P.B. The residual calculus paradox. J. Periodontol. 1990, 61, 65–66. [Google Scholar] [CrossRef]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions-Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45 (Suppl. S20), 1–8. [Google Scholar] [CrossRef]
- Pei, X.; Lu, X.; Liu, J.; Liu, D.; Yang, Y.; Ostrikov, K.; Chu, P.K.; Pan, Y. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet. J. Phys. D 2012, 45, 165205. [Google Scholar] [CrossRef]
- Gorynia, S.; Koban, I.; Matthes, R.; Welk, A.; Gorynia, S.; Hubner, N.O.; Kocher, T.; Kramer, A. In vitro efficacy of cold atmospheric pressure plasma on S. sanguinis biofilms in comparison of two test models. GMS Hyg. Infect Control 2013, 8, 1. [Google Scholar] [CrossRef]
- Koban, I.; Holtfreter, B.; Hubner, N.O.; Matthes, R.; Sietmann, R.; Kindel, E.; Weltmann, K.D.; Welk, A.; Kramer, A.; Kocher, T. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro-proof of principle experiment. J. Clin. Periodontol. 2011, 38, 956–965. [Google Scholar] [CrossRef]
- Lin, G.H.; Suarez Lopez Del Amo, F.; Wang, H.L. Laser therapy for treatment of peri-implant mucositis and peri-implantitis: An American Academy of Periodontology best evidence review. J. Periodontol. 2018, 89, 766–782. [Google Scholar] [CrossRef] [PubMed]
- Louropoulou, A.; Slot, D.E.; Van der Weijden, F. Influence of mechanical instruments on the biocompatibility of titanium dental implants surfaces: A systematic review. Clin. Oral Implants Res. 2015, 26, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Schmucker, A.; Becker, J. Efficacy of alternative or adjunctive measures to conventional treatment of peri-implant mucositis and peri-implantitis: A systematic review and meta-analysis. Int. J. Implant Dent. 2015, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Q.; Song, K.; Zhou, X.; Xiong, Z.; Du, T.; Lu, X.; Cao, Y. Effects of non-equilibrium plasma in the treatment of ligature-induced peri-implantitis. J. Clin. Periodontol. 2015, 42, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Crawford, R.J.; Ivanova, E.P. Plasma-assisted surface modification of organic biopolymers to prevent bacterial attachment. Acta Biomater. 2011, 7, 2015–2028. [Google Scholar] [CrossRef]
- Bazaka, K.; Jacob, M.V.; Truong, V.K.; Wang, F.; Pushpamali, W.A.; Wang, J.Y.; Ellis, A.V.; Berndt, C.C.; Crawford, R.J.; Ivanova, E.P. Plasma-enhanced synthesis of bioactive polymeric coatings from monoterpene alcohols: A combined experimental and theoretical study. Biomacromolecules 2010, 11, 2016–2026. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, T.; Declercq, H.; De Geyter, N.; Cornelissen, R.; Dubruel, P.; Leys, C.; Beaurain, A.; Payen, E.; Morent, R. Plasma surface modification of polylactic acid to promote interaction with fibroblasts. J. Mater. Sci. Mater. Med. 2013, 24, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Bazaka, K.; Jacob, M.V.; Ostrikov, K.K. Sustainable life cycles of natural-precursor-derived nanocarbons. Chem. Rev. 2016, 116, 163–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safinia, L.; Datan, N.; Höhse, M.; Mantalaris, A.; Bismarck, A. Towards a methodology for the effective surface modification of porous polymer scaffolds. Biomaterials 2005, 26, 7537–7547. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Tu, C.; Yang, J.; Bei, J.; Wang, S. Influences of ammonia plasma treatment on modifying depth and degradation of poly(L-lactide) scaffolds. Biomaterials 2006, 27, 2699–2704. [Google Scholar] [CrossRef] [PubMed]
Authors Year [Reference] | Ti Component/Surface Texture/Implant company | Contamination Method | Number of Specimens Per Group (Total) | CAP Device | CAP Settings: Time (s) Mean Power (W) Gas Distance (D) | Decontamination Methods | Settings for other Methods | Outcome Measured | Overall Conclusions |
---|---|---|---|---|---|---|---|---|---|
Rupf et al. 2011 [32] |
| Oral biofilm formed in situ by fixing Ti at the buccal site of molar and premolar teeth for 24 h or 72 h | 149:24 h 149:72 h 36: no biofilm (334) | Custom built (Leibniz Institute of Surface Modification, Germany) |
|
|
|
| CAP caused inactivation of bacteria biofilm and significant reduction of protein amounts. For complete elimination, additional application and second series of CAP was necessary |
Coelho et al. 2012 [46] |
| No contamination | 24 implants | kiNPen (INP, Greifswald, Germany) |
| n/a | n/a |
| CAP fostered higher levels of contact with surrounding tissues, promoting more rapid ad higher quantity of bone around rough Ti surfaces |
Duske et al. 2012 [7] |
| No contamination | 10 discs per group (360) | Plasma jet (INP, Greifswald, Germany) |
|
| n/a |
| CAP reduced contact angle and supports spreading of MG-63 cells |
Canullo et al.2013 [42] |
| n/a | 30 per group (60) | Plasma Reactor (Colibri, Gambetti Company) |
| Untreated | n/a | L 929 viability, adhesion, morphology | CAP treatment could be used for abutment cleansing to favor peri-implant tissue healing |
Giro et al. 2013 [49] |
| No contamination | 24 implants | kiNPen (INP, Greifswald, Germany) |
| n/a | n/a |
| Higher degrees of surface wettability resulted in significantly higher BIC and BAFO following CaP-CAP |
Idlibi et al. 2013 [18] |
| Oral biofilm formed in situ at the buccal site of molar and premolar teeth for 72h | 20 in each group (200) | Custom built (Leibniz Institute of Surface Modification, Leipzig, Germany) | CAP 1:
| 1. Untreated control; 2. Gas; 3. DL; 4. AA; 5a and 5b. CHX | 2.
|
| CAP significantly reduced the viability and quantity of biofilm, although complete removal was not achieved. Its efficacy correlated with the treatment duration and CAP power |
Danna et al. 2015 [47] |
| No contamination | 56 implants | kiNPen (INP, Greifswald, Germany) |
| n/a | n/a |
| CAP-treated Ti and CaP implants showed decreased levels of C and increased levels of Ti and O, Ca and O. No significant differences for BAFO. Significant increase in BIC for CAP-treated Ti implants, not for CaP surfaces |
Duske et al. 2015 [48] |
| Biofilm formed in vitro from subgingival plaque | 10 discs per group | kINPen08, INP Greifswald, Germany |
|
| BR 1 mm/s for 120 s |
| Biofilm remnants on BR and CAP impaired MG-63 cell development, whilst BR+CAP provided an increased area of MG-63 cells |
Ibis F et al. 2016 [50] |
| Escherichia coli; Staphylococcusaureus | n/a | Custom made | n/a | n/a | n/a |
| Up to > 95% biofilm was inactivated by CAP and up to 50% was retarded. Increased hydrophilicity after CAP was obtained. |
Lee et al. 2016 [51] |
| No contamination | n/a | Custom made | Pure He/He and O2D: 20 mm | n/a | n/a |
| CAP treatment enhances wettability of the Ti surfaces especially for the He/O2 CAP |
Preissner et al. 2016 [53] |
| Streptococcus mitis | Eight implants per group (32) | TTP60 and TTP120, kINPen Med (INP Greifswald, Germany) | TTP 60: 60 s; Ar 4.3 slm; |
| 1.
|
| Number of dead cells was higher with CAP compared to DL and control |
TTP 120: 120 s; Ar 4.3 slm | n/a | ||||||||
Canullo et al. 2017 [44] |
| Streptococcus mitis | (720) | Plasma beam mini (Diener Electronic) |
| n/a | n/a |
| CAP enhanced MC3T3-E1 attachment and spreading as well as bacterial decontamination |
Canullo et al. 2017 [43] |
| No contamination | 92 discs per group (216) | Plasma R (Sweden & Martina) |
| Untreated | n/a |
| CAP showed a positive effect on MG-63 cells grown on CAP-treated and untreated machined, plasma sprayed, and zirconia discs. |
Matthes et al. 2017 [52] |
| Biofilm formed in vitro from subgingival plaque | 200 | kINPen09, neoplas GmbH, INP Greifswald, Germany |
|
| 1 and 2 Erythritol for 90 s |
| AA + CAP did not enhance MG-63 spreading compared to AA alone. |
Matthes et al. 2017 [52] |
| Biofilm formed in vitro from subgingival plaque | 200 | kINPen09, neoplas GmbH, INP Greifswald, Germany |
|
| 1 and 2 Erythritol for 90 s |
| AA+CAP did not enhance MG-63 spreading compared to AA alone. |
Karaman et al. 2018 [27] |
| No contamination | n/a | Custom made | n/a |
| n/a |
| RGD + CAP significantly increased cell adhesion and proliferation |
Canullo et al.2018 [45] |
| No contamination | Four implants per animal (eight beagle dogs) | Ar-plasma (Diener electronic, Jettingen, Germany) |
| Untreated | n/a |
| Implants treated using AR-plasma reached higher BIC when compared to untreated |
Ulu et al. 2018 [55] |
| S. aureus | 76 | Plasma One (Plasma Medical Systems, Bad Ems, Germany) |
| Laser ER:YAG | 30 s at 100mJ/pulse power |
| Cap showed superior antibiofilm activity than contact and noncontact laser treatment without temperature increase or damages to the surface of Ti discs |
Yang et al. 2018 [12] |
| Porphyromonas gingivalis | n/a | Custom made |
| Untreated | n/a |
| CAP improved surface hydrophilicity and roughness and completely eliminated P. ginigvalis in 360 s, promoting growth of both cell lines |
Lee et al. 2019 [37] |
| P. gingivalis | Five discs per group, two discs per group | Custom made |
| UntreatedHe without CAPHe + CAP | n/a |
| He-CAP was effective for removing P. gingivalis from SLA discs without surface alterations |
Matthes et al. 2019 [28] |
| No contamination | n/a | kINPen09, kINPen08 and kiNPen Chamber, (INP Greifswald, Germany) |
| 0.2% CHX;0.1% octenidine;70% ethanol | Antiseptic solutions for 900 s |
| CAP reduced water contact angle and supported cell coverage, whereas CHX and octenidine reduced cell surface coverage. |
| |||||||||
| |||||||||
Naujokat et al. 2019 [22] |
| No contamination | 16 implants | kINPen Med, INP Greifswald, Germany |
| Untreated | n/a |
| CAP did not lead to remarkable change in surface morphology. CAP conditioning prior to insertion resulted in higher BIC and ITBD, but not faster or stronger bone adherence and mineralization |
Smeets et al. 2019 [54] |
| No contamination | (364) | Yocto III (Diener Electronic) | CAP 1
| 1. UV |
1a.
|
| CAP and UV caused a significant reduction of organic material, increased the hydrophilicity of zirconia, and improved the conditions for osteoblasts |
| |||||||||
| |||||||||
Yang et al. 2020 [21] |
| S. mutans; P. gingivalis | n/a | CAP Med-I (Plasma Health Scientech Group, Tsinghua University, China) |
CAP1
| Untreated | n/a |
| The He-CAP jet increased hydrophilicity without changing surface topography and eliminated bacterial growth with surface chemistry change. |
Author Year [Reference] | Outcome Measure (Measurement) | Comparison Factor | Results | Conclusions |
---|---|---|---|---|
Coelho et al. 2012 [46] | Histology
| AB/AE vs. AB/AE + CAP | Week 1:
| Ar CAP treatment in vivo fostered higher levels of contact with the surrounding tissues and it is a promising option to hasten osseointegration |
Giro et al. 2013 [49] | Histology
| CaP vs. CaP + CAP | Week 1:
| Ar CAP-conditioned surfaces supported in vivo a more uniform presence of osteogenic tissue and a closer interaction with the implant surface which may lead to faster and greater osseointegration |
Danna et al. 2015 [47] | Histology
|
| Week 3
| Air-based CAP may improve osseointegration of Ti surfaces but not CaP surfaces |
Canullo et al. 2018 [45] | Histology
| ZirTi vs. ZirTi + CAP | 1 month
| Activation of the implant surface by Ar CAP may enhance the osseointegration process. |
Naujokat et al. 2019 [22] | Histology:
| AB/AE vs. AB/AE + CAP | Week 8
| Ar CAP conditioning resulted in a higher BIC ratio and ITBD, indicating a beneficial effect although neither faster or stronger bone adherence or mineralization was detected by fluorescence labeling |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, W.L.; Perrotti, V.; Iaculli, F.; Piattelli, A.; Quaranta, A. The Emerging Role of Cold Atmospheric Plasma in Implantology: A Review of the Literature. Nanomaterials 2020, 10, 1505. https://doi.org/10.3390/nano10081505
Hui WL, Perrotti V, Iaculli F, Piattelli A, Quaranta A. The Emerging Role of Cold Atmospheric Plasma in Implantology: A Review of the Literature. Nanomaterials. 2020; 10(8):1505. https://doi.org/10.3390/nano10081505
Chicago/Turabian StyleHui, Wang Lai, Vittoria Perrotti, Flavia Iaculli, Adriano Piattelli, and Alessandro Quaranta. 2020. "The Emerging Role of Cold Atmospheric Plasma in Implantology: A Review of the Literature" Nanomaterials 10, no. 8: 1505. https://doi.org/10.3390/nano10081505
APA StyleHui, W. L., Perrotti, V., Iaculli, F., Piattelli, A., & Quaranta, A. (2020). The Emerging Role of Cold Atmospheric Plasma in Implantology: A Review of the Literature. Nanomaterials, 10(8), 1505. https://doi.org/10.3390/nano10081505