Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SEM Characterization of Hierarchical Micro/Nanostructure Morphologies
3.2. 3D Morphology Characterization
3.3. EDS Analysis
3.4. Polarization-Dependent Reflectance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vorobyev, A.Y.; Guo, C. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photon. Rev. 2013, 7, 385–407. [Google Scholar] [CrossRef]
- Grigoropoulos, C.P. Laser synthesis and functionalization of nanostructures. Int. J. Extrem. Manuf. 2019, 1, 012002. [Google Scholar] [CrossRef]
- Livakas, N.; Skoulas, E.; Stratakis, E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron. Adv. 2020, 3, 190035. [Google Scholar] [CrossRef]
- Yiyuan, Z.; Yunlong, J.; Chuanzong, L.; Chao, C.; Jiawen, L.; Yanlei, H.; Dong, W.; Jiaru, C. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications. Int. J. Extrem. Manuf. 2020, 2, 032002. [Google Scholar]
- Xie, X.; Zhou, C.; Wei, X.; Hu, W.; Ren, Q. Laser machining of transparent brittle materials: From machining strategies to applications. Opto-Electron. Adv. 2019, 2, 180017. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Bai, B.-F.; Chen, Q.-D.; Sun, H.-B. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron. Adv. 2019, 2, 190021. [Google Scholar] [CrossRef] [Green Version]
- Serien, D.; Sugioka, K. Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electron. Adv. 2018, 1, 180008. [Google Scholar] [CrossRef] [Green Version]
- Bonse, J.; Höhm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-induced periodic surface structures—a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 109–123. [Google Scholar] [CrossRef]
- Buividas, R.; Mikutis, M.; Juodkazis, S. Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances. Prog. Quantum Electron. 2014, 38, 119–156. [Google Scholar] [CrossRef]
- Ahmmed, K.; Grambow, C.; Kietzig, A.-M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining. Micromachines 2014, 5, 1219–1253. [Google Scholar] [CrossRef]
- Taylor, R.; Hnatovsky, C.; Simova, E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photon. Rev. 2008, 2, 26–46. [Google Scholar] [CrossRef]
- Ionin, A.A.; Klimachev, Y.M.; Kozlov, A.Y.; Kudryashov, S.I.; Ligachev, A.E.; Makarov, S.V.; Seleznev, L.V.; Sinitsyn, D.V.; Rudenko, A.A.; Khmelnitsky, R.A. Direct femtosecond laser fabrication of antireflective layer on gaas surface. Appl. Phys. B 2013, 111, 419–423. [Google Scholar] [CrossRef]
- Korol’kov, V.P.; Andrei, A.I.; Sergei, I.K.; Seleznev, L.V.; Sinitsyn, D.V.; Samsonov, R.V.; Maslii, A.I.; Medvedev, A.Z.; Gol’denberg, B.G. Surface nanostructuring of Ni/Cu foilsby femtosecond laser pulses. Quantum Electron. 2011, 41, 387. [Google Scholar] [CrossRef]
- Rebollar, E.; Castillejo, M.; Ezquerra, T.A. Laser induced periodic surface structures on polymer films: From fundamentals to applications. Eur. Polym. J. 2015, 73, 162–174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Koji, S. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron. Adv. 2019, 2, 190002. [Google Scholar] [CrossRef] [Green Version]
- Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Levchenko, A.O.; Rudenko, A.A.; Saraeva, I.N.; Zayarny, D.A.; Nathala, C.R.; Husinsky, W. Nanoscale surface boiling in sub-threshold damage and above-threshold spallation of bulk aluminum and gold by single femtosecond laser pulses. Laser Phys. Lett. 2015, 13, 025603. [Google Scholar] [CrossRef]
- Zhang, D.; Ranjan, B.; Tanaka, T.; Sugioka, K. Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring. Int. J. Extrem. Manuf. 2020, 2, 015001. [Google Scholar] [CrossRef]
- Zhang, D.; Ranjan, B.; Tanaka, T.; Sugioka, K. Carbonized hybrid micro/nanostructured metasurfaces produced by femtosecond laser ablation in organic solvents for biomimetic antireflective surfaces. ACS Appl. Nano Mater. 2020, 3, 1855–1871. [Google Scholar] [CrossRef] [Green Version]
- Nathala, C.S.R.; Ajami, A.; Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Ganz, T.; Assion, A.; Husinsky, W. Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium. Opt. Express 2015, 23, 5915–5929. [Google Scholar] [CrossRef]
- Kudryashov, S.I.; Makarov, S.V.; Ionin, A.A.; Nathala, C.S.R.; Ajami, A.; Ganz, T.; Assion, A.; Husinsky, W. Dynamic polarization flip in nanoripples on photoexcited Ti surface near its surface plasmon resonance. Opt. Lett. 2015, 40, 4967–4970. [Google Scholar] [CrossRef]
- Harzic, R.L.; Schuck, H.; Sauer, D.; Anhut, T.; Riemann, I.; König, K. Sub-100 nm nanostructuring of silicon by ultrashort laser pulses. Opt. Express 2005, 13, 6651–6656. [Google Scholar] [CrossRef] [PubMed]
- Kuladeep, R.; Sahoo, C.; Rao, D.N. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser. Appl. Phys. Lett. 2014, 104, 222103. [Google Scholar] [CrossRef]
- Miyaji, G.; Miyazaki, K.; Zhang, K.; Yoshifuji, T.; Fujita, J. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water. Opt. Express 2012, 20, 14848–14856. [Google Scholar] [CrossRef]
- Yao, J.-W.; Zhang, C.-Y.; Liu, H.-Y.; Dai, Q.-F.; Wu, L.-J.; Lan, S.; Gopal, A.V.; Trofimov, V.A.; Lysak, T.M. High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses. Opt. Express 2012, 20, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Albu, C.; Luculescu, C.; Zamfirescu, M. Periodical structures induced by femtosecond laser on nickel in air. Optoelectron. Adv. Mater. 2014, 8, 363–367. [Google Scholar]
- Zhao, Q.Z.; Malzer, S.; Wang, L.J. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses. Opt. Lett. 2007, 32, 1932–1934. [Google Scholar] [CrossRef]
- Bonse, J.; Krüger, J.; Höhm, S.; Rosenfeld, A. Femtosecond laser-induced periodic surface structures. J. Laser Appl. 2012, 24, 042006. [Google Scholar]
- Bonse, J.; Höhm, S.; Rosenfeld, A.; Krüger, J. Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:Sapphire femtosecond laser pulses in air. Appl. Phys. A 2013, 110, 547–551. [Google Scholar] [CrossRef]
- Dar, M.H.; Kuladeep, R.; Saikiran, V. Femtosecond laser nanostructuring of titanium metal towards fabrication of low-reflective surfaces over broad wavelength range. Appl. Surf. Sci. 2016, 371, 479–487. [Google Scholar] [CrossRef]
- Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium. Appl. Surf. Sci. 2016, 374, 190–196. [Google Scholar] [CrossRef]
- Sedao, X.; Shugaev, M.V.; Wu, C.; Douillard, T.; Esnouf, C.; Maurice, C.; Reynaud, S.; Pigeon, F.; Garrelie, F.; Zhigilei, L.V. Growth twinning and generation of high-frequency surface nanostructures in ultrafast laser-induced transient melting and resolidification. ACS Nano 2016, 10, 6995–7007. [Google Scholar] [CrossRef] [PubMed]
- Abou-Saleh, A.; Karim, E.T.; Maurice, C.; Reynaud, S.; Pigeon, F.; Garrelie, F.; Zhigilei, L.V.; Colombier, J.P. Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr. Appl. Phys. A 2018, 124, 308. [Google Scholar] [CrossRef]
- Obona, J.V.; Ocelík, V.; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis, A.J.; De Hosson, J.T.M. On the surface topography of ultrashort laser pulse treated steel surfaces. Appl. Surf. Sci. 2011, 258, 1555–1560. [Google Scholar] [CrossRef]
- Reinhardt, H.; Kroll, M.; Karstens, S.L.; Schlabach, S.; Hampp, N.A.; Tallarek, U. Nanoscaled fractal superstructures via laser patterning—a versatile route to metallic hierarchical porous materials. Adv. Mater. Interfaces 2020, 7, 2000253. [Google Scholar] [CrossRef] [Green Version]
- Ackerl, N.; Boerner, P.; Wegener, K. Toward application of hierarchical structures by ultrashort pulsed laser ablation. J. Laser Appl. 2019, 31, 022501. [Google Scholar]
- Ranella, A.; Barberoglou, M.; Bakogianni, S.; Fotakis, C.; Stratakis, E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 2010, 6, 2711–2720. [Google Scholar] [CrossRef]
- Cunha, A.; Zouani, O.F.; Plawinski, L.; Botelho do Rego, A.M.; Almeida, A.; Vilar, R.; Durrieu, M.-C. Human mesenchymal stem cell behavior on femtosecond laser-textured Ti-6Al-4V surfaces. Nanomedicine 2015, 10, 725–739. [Google Scholar] [CrossRef]
- Lee, K.; Ki, H. Femtosecond laser patterning based on the control of surface reflectance. Appl. Surf. Sci. 2019. [Google Scholar] [CrossRef]
- Li, G.; Li, J.; Zhang, C.; Hu, Y.; Li, X.; Chu, J.; Huang, W.; Wu, D. Large-area one-step assembly of three-dimensional porous metal micro/nanocages by ethanol-assisted femtosecond laser irradiation for enhanced antireflection and hydrophobicity. ACS Appl. Mater. Interfaces 2015, 7, 383–390. [Google Scholar] [CrossRef]
- Ding, K.; Wang, C.; Zheng, Y.; Xie, Z.; Luo, Z.; Man, S.; Wu, B.; Duan, J. One-step fabrication of multifunctional fusiform hierarchical micro/nanostructures on copper by femtosecond laser. Surf. Coat. Technol. 2019, 367, 244–251. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, F.; Yang, Q.; Yong, J.; Bian, H.; Ou, Y.; Si, J.; Meng, X.; Hou, X. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser. ACS Appl. Mater. Interfaces 2012, 4, 4905–4912. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lu, Y.; Wu, P.; Zhang, Z.; Li, J.; Zhu, W.; Hu, Y.; Wu, D.; Chu, J. Fish scale inspired design of underwater superoleophobic microcone arrays by sucrose solution assisted femtosecond laser irradiation for multifunctional liquid manipulation. J. Mater. Chem. A 2015, 3, 18675–18683. [Google Scholar] [CrossRef]
- Yong, J.; Chen, F.; Yang, Q.; Huo, J.; Hou, X. Superoleophobic surfaces. Chem. Soc. Rev. 2017, 46, 4168–4217. [Google Scholar] [CrossRef] [Green Version]
- Barcikowski, S.; Menéndez-Manjón, A.; Chichkov, B.; Brikas, M.; Račiukaitis, G. Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl. Phys. Lett. 2007, 91, 083113. [Google Scholar] [CrossRef]
- Garcell, E.M.; Lam, B.; Guo, C. Femtosecond laser-induced herringbone patterns. Appl. Phys. A 2018, 124, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, S.; Rung, S.; Hellmann, R. One-dimensional low spatial frequency LIPSS with rotating orientation on fused silica. Appl. Surf. Sci. 2017, 411, 113–116. [Google Scholar] [CrossRef]
- Zheng, X.; Cong, C.; Lei, Y.; Yang, J.; Guo, C. Formation of slantwise surface ripples by femtosecond laser irradiation. Nanomaterials 2018, 8, 458. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, S.I.; Nastulyavichus, A.A.; Saraeva, I.N.; Rudenko, A.A.; Zayarny, D.A.; Ionin, A.A. Deeply sub-wavelength laser nanopatterning of Si surface in dielectric fluids: Manipulation by surface plasmon resonance. Appl. Surf. Sci. 2020, 519, 146204. [Google Scholar] [CrossRef]
- Zhao, Q.-Z.; Malzer, S.; Wang, L.-J. Self-organized tungsten nanospikes grown on subwavelength ripples induced by femtosecond laser pulses. Opt. Express 2007, 15, 15741–15746. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Y.; Du, K.; Bai, S.; Tian, J.; Pan, M.; Ye, H.; Qiu, M.; Li, Q. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals. Appl. Phys. Lett. 2017, 110, 101101. [Google Scholar] [CrossRef]
- Barmina, E.V.; Barberoglu, M.; Zorba, V.; Simakin, A.V.; Stratakis, E.; Fotakis, K.; Shafeev, G.A. Surface nanotexturing of tantalum by laser ablation in water. Quantum Electron. 2009, 39, 89–93. [Google Scholar] [CrossRef]
- Jorge-Mora, A.; Imaz, N.; Garcia-Lecina, E.; O’Connor, G.M.; Gómez-Vaamonde, R.; Alonso-Pérez, A.; Franco-Trepat, E.; García-Santiago, C.; Pino-Minguez, J.; Nieto, D. In vitro response of bone marrow mesenchymal stem cells (hBMSCs) on laser-induced periodic surface structures for hard tissue replacement: Comparison between tantalum and titanium. Opt. Laser Eng. 2018, 111, 34–41. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, H.; Her, T.-H. Self-assembly of tunable and highly uniform tungsten nanogratings induced by a femtosecond laser with nanojoule energy. Nanotechnology 2007, 18, 485304. [Google Scholar] [CrossRef]
- Barmina, E.; Serkov, A.; Stratakis, E.; Fotakis, C.; Stolyarov, V.; Stolyarov, I.; Shafeev, G. Nano-textured W shows improvement of thermionic emission properties. Appl. Phys. A 2012, 106, 1–4. [Google Scholar] [CrossRef]
- Bashir, S.; Rafique, M.S.; Nathala, C.S.; Ajami, A.A.; Husinsky, W. Femtosecond laser fluence based nanostructuring of W and Mo in ethanol. Phys. B 2017, 513, 48–57. [Google Scholar] [CrossRef]
- Barmina, E.V.; Stratakis, E.; Barberoglou, M.; Stolyarov, V.N.; Stolyarov, I.N.; Fotakis, C.; Shafeev, G.A. Laser-assisted nanostructuring of tungsten in liquid environment. Appl. Surf. Sci. 2012, 258, 5898–5902. [Google Scholar] [CrossRef]
- Albu, C.; Dinescu, A.; Filipescu, M.; Ulmeanu, M.; Zamfirescu, M. Periodical structures induced by femtosecond laser on metals in air and liquid environments. Appl. Surf. Sci. 2013, 278, 347–351. [Google Scholar] [CrossRef]
- Okamuro, K.; Hashida, M.; Miyasaka, Y.; Ikuta, Y.; Tokita, S.; Sakabe, S. Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Phys. Rev. B 2010, 82, 165417. [Google Scholar] [CrossRef] [Green Version]
- Bévillon, E.; Colombier, J.-P.; Recoules, V.; Zhang, H.; Li, C.; Stoian, R. Ultrafast switching of surface plasmonic conditions in nonplasmonic metals. Phys. Rev. B 2016, 93, 165416. [Google Scholar] [CrossRef] [Green Version]
- Akram, M.; Bashir, S.; Jalil, S.A.; ElKabbash, M.; Aumayr, F.; Ajami, A.; Husinsky, W.; Mahmood, K.; Rafique, M.S.; Guo, C. Femtosecond laser induced periodic surface structures for the enhancement of field emission properties of tungsten. Opt. Mater. Express 2019, 9, 3183–3192. [Google Scholar] [CrossRef]
- Vorobyev, A.Y.; Guo, C. Femtosecond laser-induced periodic surface structure formation on tungsten. J. Appl. Phys. 2008, 104, 063523. [Google Scholar] [CrossRef]
- Colombier, J.P.; Garrelie, F.; Faure, N.; Reynaud, S.; Bounhalli, M.; Audouard, E.; Stoian, R.; Pigeon, F. Effects of electron-phonon coupling and electron diffusion on ripples growth on ultrafast-laser-irradiated metals. J. Appl. Phys. 2012, 111, 024902. [Google Scholar] [CrossRef] [Green Version]
- Berezovska, N.; Dmitruk, I.; Vovdenko, S.; Yeshchenko, O.; Teselko, P.; Dmytruk, A.; Blonskyi, I. Sub-micron and nanosized features in laser-induced periodic surface structures. Indian J. Phys. 2018, 93, 495–502. [Google Scholar] [CrossRef]
- Xue, L.; Yang, J.; Yang, Y.; Wang, Y.; Zhu, X. Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses. Appl. Phys. A 2012, 109, 357–365. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Habainy, J.; Dai, Y.; Lee, Y.; Iyengar, S. Thermal diffusivity of tungsten irradiated with protons up to 5.8 dpa. J. Nucl. Mater. 2018, 509, 152–157. [Google Scholar] [CrossRef]
- Savchenko, I.V.; Stankus, S.V. Thermal conductivity and thermal diffusivity of tantalum in the temperature range from 293 to 1800 K. Thermophys. Aeromech. 2008, 15, 679–682. [Google Scholar] [CrossRef]
- Gu, D.; Guo, M.; Zhang, H.; Sun, Y.; Wang, R.; Zhang, L. Effects of laser scanning strategies on selective laser melting of pure tungsten. Int. J. Extrem. Manuf. 2020, 2, 025001. [Google Scholar] [CrossRef]
- Han, C.; Tam, W.Y. Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays. Appl. Phys. Lett. 2015, 106, 081102. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Zhao, L.; Ju, D.; Jiang, Y.; Liu, L. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on l-shaped metamaterial. Opt. Express 2015, 23, 8670–8680. [Google Scholar] [CrossRef]
- Zhang, D.; Choi, W.; Jakobi, J.; Kalus, M.-R.; Barcikowksi, S.; Cho, S.-H.; Sugioka, K. Spontaneous shape alteration and size separation of surfactant-free silver particles synthesized by laser ablation in acetone during long-period storage. Nanomaterials 2018, 8, 529. [Google Scholar] [CrossRef] [Green Version]
- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A.P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Leng, X.; Pereiro, J.; Strle, J.; Dubuis, G.; Bollinger, A.T.; Gozar, A.; Wu, J.; Litombe, N.; Panagopoulos, C.; Pavuna, D.; et al. Insulator to metal transition in WO3 induced by electrolyte gating. NPJ Quantum Mater. 2017, 2, 35. [Google Scholar] [CrossRef]
- Kolar, D. T-Tantalum oxide and tantalates. In Concise Encyclopedia of Advanced Ceramic Materials; Brook, R.J., Ed.; Pergamon Press: Oxford, UK, 1991; p. 469. [Google Scholar]
- Cheng, C.-W.; Abbas, M.N.; Chiu, C.-W.; Lai, K.-T.; Shih, M.-H.; Chang, Y.-C. Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt. Express 2012, 20, 10376–10381. [Google Scholar] [CrossRef] [PubMed]
Sample | Laser Parameters | Environment | LIPSSs | Ref |
---|---|---|---|---|
Ta, W | 457 fs, 1045 nm, 100 kHz, 600 mW, 6 μJ/pulse, 66.12 J/cm2, 1 mm/s | water | 400–600 nm 30–50 nm | This work |
Ta, W | 457 fs, 1045 nm, 100 kHz, 600 mW, 6 μJ/pulse, 66.12 J/cm2, 1 mm/s | acetone | 370–600 nm 20–60 nm | [18] |
Ta | 500 fs, 1030 nm, 100 kHz, 2–6 μJ/pulse, 0.30 J/cm2, 200 mm/s | air | 780 ± 48 nm | [52] |
W | 30 fs, 800 nm, 1 kHz, 0.6–2.5 J/cm2 | ethanol | 310–340 nm | [55] |
W | 70 fs, 800 nm, 1 kHz, pulse delay 0–14 ps, 1 J/cm2 | ethanol | 310–370 nm | [56] |
W | 180 fs, 800 nm, other parameters cannot be found | ethanol | 350 nm | [54] |
W | 200 fs, 2 kHz, 775 and 387 nm, 0.11 and 0.1 J/cm2 | air | 400–460 nm 130–230 nm | [57] |
W | 160 fs, 800 nm, 10 Hz, 1.1–34 μJ/pulse, 0.2–1 J/cm2 | air | 600–700 nm | [58] |
W | 50 fs, 800 nm, 0.09 J/cm2 | air | 800 nm | [59] |
W | 30 fs, 800 nm, 1 kHz, 0.09–1.81 J/cm2 | air | 634 ± 48 nm | [60] |
W | 33 fs, 800 nm, 1 kHz, 0.4–3.2 μJ/pulse | air | 350–600 nm | [26] |
W | 33 fs, 800 nm, 1 kHz, 3–12 J/cm2 | air | ~550 nm | [49] |
W | 90 fs, 800 nm, 80 MHz, 18–24 mW | air | 150–185 nm | [53] |
W | 65 fs, 400/800 nm, 1 kHz, 0.35/0.37 J/cm2 | air | 289/542 nm | [61] |
W | 150 fs, 30 μJ/pulse, 0.77 J/cm2 | air | ~600 nm | [62] |
W | 140 fs, 400 nm, 1 kHz, 0.5 J/cm2 | air | 304–309 nm | [63] |
W | 50 fs to 8 ps, 800 nm, 1 kHz, 0.1–1.2 mm/s, 0.8–6.2 J/cm2, 0.1–1.2 mm/s | air | 450–690 nm | [64] |
Sample | Metal (Ta/W) | Carbon | Oxygen |
---|---|---|---|
Non-ablated Ta | 40.94 | 41.82 | 17.15 |
Ta ablated region 1 | 48.79 | 24.84 | 26.34 |
Ta ablated region 2 | 46.40 | 25.39 | 28.22 |
Non-ablated W | 67.72 | 20.60 | 11.69 |
W ablated region 1 | 57.06 | 27.19 | 15.75 |
W ablated region 2 | 49.99 | 28.26 | 21.75 |
Material | Melting Temperature (°C) | Thermal Diffusivity (MM2/S) | Thermal Conductivity (W/m·K) | Specific Heat (J/g K) |
---|---|---|---|---|
Ta | 3017 | 24.2 | 57 | 0.14 |
W | 3422 | ~70 | 170 | 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Ranjan, B.; Tanaka, T.; Sugioka, K. Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection. Nanomaterials 2020, 10, 1573. https://doi.org/10.3390/nano10081573
Zhang D, Ranjan B, Tanaka T, Sugioka K. Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection. Nanomaterials. 2020; 10(8):1573. https://doi.org/10.3390/nano10081573
Chicago/Turabian StyleZhang, Dongshi, Bikas Ranjan, Takuo Tanaka, and Koji Sugioka. 2020. "Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection" Nanomaterials 10, no. 8: 1573. https://doi.org/10.3390/nano10081573
APA StyleZhang, D., Ranjan, B., Tanaka, T., & Sugioka, K. (2020). Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization-Dependent Broadband Antireflection. Nanomaterials, 10(8), 1573. https://doi.org/10.3390/nano10081573